首页|机器学习的时变环境下自由空间光通信系统信道建模研究

机器学习的时变环境下自由空间光通信系统信道建模研究

扫码查看
在时变环境下,传统模型只去除了部分通信串扰,传输损耗大,为此提出机器学习的时变环境下自由空间光通信系统信道建模方法。采用直方图统计法统计数据集的峰值、选择通信最短路径,遗传算法得到信道最佳参数,机器学习根据最佳参数计算通信阻抗,获得电容和电导值,对权值进行调整去除通信串扰,根据信道规模特性将天线域转换为波束域,搭建时变环境下自由空间光通信信道。仿真实验结果表明,本模型的传输损耗平均达到148 dB,具有较高的应用价值。
Research on channel modeling of free space optical communication systems in time-varying environments based on machine learning
In time-varying environments,traditional models only remove some communication crosstalk and have high transmission losses.Therefore,a machine learning channel modeling method for free space optical communication systems in time-varying environments is proposed.The histogram statistical method is used to calculate the peak values of the dataset,select the shortest communication path,obtain the optimal channel parameters through genetic algo-rithm,calculate the communication impedance based on the optimal parameters through machine learning,obtain ca-pacitance and conductivity values,adjust the weights to remove communication crosstalk,convert the antenna domain into beam domain based on the channel size characteristics,and build a free space optical communication channel in a time-varying environment.The simulation experimental results show that the average transmission loss of the model in this paper reaches 148 dB,which is relatively low and has high application value.

machine learningtime-varying environmentfree space optical communicationfree space optical communicationtransmission loss

周书兴、唐露新

展开 >

广州理工学院,广州 510540

广州理工学院广东省工业机器人集成与应用工程技术研究中心,广州 510540

机器学习 时变环境 自由空间光通信 自由空间光通信 传输损耗

广东省教育科学规划课题(2022)

2022GXJK373

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(4)
  • 18