首页|基于聚类分析提取特征的光通信系统异常数据检测

基于聚类分析提取特征的光通信系统异常数据检测

扫码查看
光通信系统易受多种因素影响,传统方法的光通信系统异常数据检测错误率高,检测效率,为了获得理想的光通信系统异常数据检测结果,设计了基于聚类分析提取特征的光通信系统异常数据检测方法。首先设计光通信系统数据传输模型,采用聚类算法提取光通信系统异常数据特征,然后采用深度学习算法建立光通信系统异常数据检测模型,并采用遗传算法优化深度学习算法,最后进行了光通信系统异常数据检测仿真实验,结果表明:本方法的光通信系统异常数据检测正确率超过98%,光通信系统异常数据检测时间为21。6 ms,具有一定的实际应用价值。
Detection of abnormal data in optical communication system based on clustering analysis and feature extraction
Optical communication systems are susceptible to various factors.Traditional methods for detecting ab-normal data in optical communication systems have high error rates and detection efficiency.In order to obtain ideal abnormal data detection results in optical communication systems,a clustering analysis based feature extraction method for abnormal data detection in optical communication systems was designed.Firstly,a data transmission model for opti-cal communication systems is designed,and clustering algorithms are used to extract abnormal data features.Then,a degree learning algorithm is used to establish an abnormal data detection model for optical communication systems,and genetic algorithms are used to optimize deep learning algorithms.Finally,a simulation experiment for abnormal data detection in optical communication systems is conducted,and the results show that the accuracy of the proposed meth-od for detecting abnormal data in optical communication systems exceeds 98%,The detection time of abnormal data in the optical communication system is 21.6 ms,which has certain practical application value.

cluster analysis algorithmoptical communication systemabnormal datadetection model

刘永立、翟伟芳、冯娟

展开 >

保定理工学院信息科与工程学院,河北保定 071000

聚类分析算法 光通信系统 异常数据 检测模型

河北省省级科技计划软科学研究专项全国高等院校计算机基础教育教学研究项目

21555401D2022-AFCEC-178

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(4)
  • 15