首页|基于局部特征增强的视网膜血管分割

基于局部特征增强的视网膜血管分割

扫码查看
视网膜血管具有细小复杂的特点,在对其进行分割时,经常出现噪点、断裂和欠分割等问题。针对此现象,提出一种基于局部特征增强的轻量化网络LRU-Net,以捕获更多细小血管特征。首先,在通道注意力模块中加入特征提取模块,对输入特征进行二次特征提取,以得到更多的细节特征;其次,设计了 一个特征融合模块,在解码器中能更有效地融合高级和低级特性,加强最终的特征表示;最后,设计了一个上下文聚合模块,提取最深层特征不同分辨率的多尺度信息,然后进行拼接,使进入上采样的输入特征更加细化。在FIVES和OCTA-500数据集上的实验结果表明,与基础网络U-Net相比,本文所提方法在做到轻量化的同时,视网膜血管分割的准确度也有了一定的提升,在两个数据集上分别达到了 98。45%、97。05%。
Retinal vascular segmentation based on local feature enhancement
Retinal blood vessels are small and complex.When segmentating retinal blood vessels,noise,fracture and undersegmentation often occur.To solve this problem,a lightweight network named LRU-Net based on local fea-ture enhancement is proposed to capture more features of small blood vessels.Firstly,a feature extraction module is added to the channel attention module to extract secondary features from input features so as to obtain more detailed features.Secondly,a feature fusion module is designed,which can fuse the high and low features more effectively in the decoder,and strengthen the final feature representation.Finally,a context aggregation module is designed to ex-tract multi-scale information with different resolutions of the deepest features,and then splicing it to make the input features into the upper sampling more detailed.Experimental results on FIVES and OCTA-500 data sets show that compared with U-Net,the proposed method not only achieves lightweight,but also improves the accuracy and Dice coefficient of retinal vessel segmentation to a certain extent.

feature enhancementfeature fusion modulecontext aggregation moduleretinal vascular segmenta-tion

王倩、辛月兰

展开 >

青海师范大学物理与电子信息工程学院,西宁 810001

省部共建藏语智能信息处理及应用国家重点实验室,西宁 810001

特征增强 特征融合模块 上下文聚合模块 视网膜血管分割

国家自然科学基金青海省自然科学基金

616620622022-ZJ-929

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(4)
  • 2