首页|基于CRS-YOLO算法的高密度柔性封装基板缺陷检测方法

基于CRS-YOLO算法的高密度柔性封装基板缺陷检测方法

扫码查看
针对柔性封装基板表面缺陷尺寸微小、特征不明显,现有检测方案实时性较差的问题,提出了一种基于柔性封装基板目标检测的CRS-YOLO算法。在单阶段网络模型YOLOv5基础上首先在Backbone添加CA注意力机制模块,强化特征提取能力;其次,将原有的SPP池化金字塔替换为性能更佳的Basic RFB池化金字塔,扩大感受野,减少模型漏检率;最后采用SIoU损失函数替换原本的CIoU损失函数,加快训练模型收敛,提高模型的检测能力。实验结果表明,在柔性封装基板缺陷数据集的验证下,CRS-YOLO算法与原网络模型相比,mAP提高了 9%,检测速度大幅提升,FPS达到48,满足了柔性封装基板表面缺陷检测的准确性和实时性。
High density flexible packaging substrate defect detection method based on CRS-YOLO algorithm
A CRS-YOLO algorithm based on flexible printed circuit board target detection is proposed to solve the problem that surface defects of flexible printed circuit board are small in size and not obvious in feature,and the exist-ing detection schemes are poor in real-time.On the basis of the single-stage network YOLOv5 model,CA attention mechanism module is first added to Backbone to strengthen the feature extraction capability.Secondly,the SPP pool pyramid is replaced by the Basic RFB pool pyramid with better performance to enlarge the receptive field and reduce the missing rate of the model.At last,SIoU loss function is used to replace CIoU loss function to accelerate the conver-gence of the training model and improve the detection ability of the model.The experimental results show that under the verification of the defect data set of the flexible printed circuit board,the mAP of the CRS-YOLO algorithm is 9%higher than that of the original network model,the detection speed is greatly improved,and the FPS is up to 48,which meets the accuracy and real-time detection of the surface defects of the flexible printed circuit board.

flexible integrated circuitattention mechanismdefect detectionYOLOv5

王锴欣、黄丹、于永兴、周泓成

展开 >

华南理工大学自动化科学与工程学院,广州 510640

华南理工大学机械与汽车工程学院,广州 510640

柔性封装基板 注意力机制 缺陷检测 YOLOv5

广州市基础与应用基础研究项目

2023A04J1691

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(5)
  • 20