首页|基于大数据分析的可见光图像融合质量评价研究

基于大数据分析的可见光图像融合质量评价研究

扫码查看
在复杂可见光图像下图像融合质量受到遮挡和重叠等因素影响,需要进行图像融合质量评价优化设计,提出基于大数据分析的可见光图像融合质量评价模型,采用相应图像块之间的视觉特征提取方法建立可见光图像的深度立体匹配模型,将不同光照强下采集的图像像素值显示映射到嵌入特征空间中,完成预处理,构建可见光图像的动态像素大数据融合模型,通过端到端的视差融合估计实现对可见光图像的动态融合,采用超分辨重建方法获得真实配对图像,分析SR结果与LR图像中的相似内容,以特征级别的图像分布域反映可见光图像融合质量评价,实现可见光图像融合质量评价。仿真结果表明,采用该方法进行可见图像融合的匹配性能较好,图像的对比度、饱和度高,提高了可见光的成像质量,耗时为0。012 s,平均迭代次数为1。569,并且均方误差仅为1。071,总误差仅为4。646,该方法有效提高了图像融合质量的同时,提高了评估效果。
Research on quality evaluation of visible light image fusion based on big data analysis
The quality of image fusion in complex visible light images is affected by factors such as occlusion and overlap.It is necessary to optimize the design of image fusion quality evaluation.A visible light image fusion quality e-valuation model based on big data analysis is proposed,and a deep stereo matching model for visible light images is es-tablished using the visual feature extraction method between corresponding image blocks,Map the pixel values of ima-ges collected under different lighting intensities to the embedded feature space,finish preprocessing,construct a dy-namic pixel big data matching model for visible light images,achieve dynamic fusion of visible light images through end-to-end disparity fusion estimation,and the superresolution reconstruction method was used to obtain the real paired images,and the similar contents of SR results and LR images were analyzed.The feature level image distribu-tion domain was used to reflect the visible image fusion quality evaluation,and the visible image fusion quality evalua-tion was realized.The simulation results show that the matching performance of visible image fusion using this method is better,the image contrast and saturation are high,and the imaging quality of visible light is improved.The time consuming is 0.012 s,the average number of iterations is 1.569,and the mean square error is only 1.071,and the to-tal error is only 4.646.The method effectively improves the image fusion quality.Improve the evaluation effect.

big data analysisvisible light imagesimage fusionquality evaluationvisual features

翟广辉、李娟

展开 >

许昌学院,河南许昌 461000

大数据分析 可见光图像 图像融合 质量评价 视觉特征

河南省科技规划项目

2022HX062

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(5)
  • 15