首页|卷积神经网提取特征的红外与可见光图像融合研究

卷积神经网提取特征的红外与可见光图像融合研究

扫码查看
当前红外与可见光图像融合存在一些难题,导致前红外与可见光图像精度低,误差大,而且前红外与可见光图像融合效率低,为了解决当前红外与可见光图像过程存在的问题,设计了基于卷积神经网提取特征的红外与可见光图像融合方法。首先分别采集对象的红外图像和可见光图像,并对原始图像去噪等预处理,改善图像的质量,然后采用卷积神经网络提取红外与可见光图像融合特征,根据特征得到红外与可见光图像融合结果,最后进行了仿真实验,结果表明本方法红外与可见光图像的融合结果的融合比率提高了 0。24,平均梯度值提升了 0。22,图像融合质量更高。
Research on infrared and visible image fusion method optimized by CNN
Currently,there are some difficulties in the fusion of infrared and visible light images,resulting in low accuracy,large errors,and low fusion efficiency.In order to solve the problems in the current process of infrared and visible light images,a fusion method for infrared and visible light images based on feature extraction using convolution-al neural networks was designed.Firstly,the infrared and visible light images of the object were collected separately,and the original image was preprocessed for denoising to improve the quality of the image.Then,convolutional neural networks were used to extract the fusion features of the infrared and visible light images,and the fusion results of the infrared and visible light images were obtained based on the features.Finally,simulation experiments were conducted,and the results showed that the fusion ratio of the fusion results of the infrared and visible light images using the pro-posed method increased by 0.24,The average gradient value increased by 0.22,resulting in higher image fusion qual-ity.

convolutional neural networkextract featuresfusion ratiosimulation testing

郑晓东、郑业爽、栾国森

展开 >

三峡大学科技学院,湖北宜昌 443002

卷积神经网络 提取特征 融合比率 仿真测试

湖北省教育厅科研项目指导性项目

B2021423

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(5)
  • 18