首页|基于改进ResNet模型的番茄叶片病虫害识别

基于改进ResNet模型的番茄叶片病虫害识别

扫码查看
识别早期番茄叶片的病虫害是预防番茄病虫害、提升产量的关键步骤之一。基于改进ResNet50识别番茄叶片病虫害。根据不同病虫害类别创建5种不同番茄病虫害数据集,并采用数据增强方式对数据进行预处理。在原始模型ResNet50的基础上,通过在网络模型结构中添加SE注意力机制模块让模型能够更准确地识别待检测目标。此外为了减少模型的参数量,实现更加轻量化的模型,利用深度可分离卷积替换传统卷积。为了说明改进模型的有效性,分析改进后的模型在番茄叶片病虫害数据集上的性能,将其与传统卷积神经网络ResNet50、AlexNet、VGG16、GoogLeNet进行对比。实验结果表明,改进后的模型相较于原模型参数量降低了37。5%,准确率达到了 97。4%,与原模型相比,其准确率提升了 4。4%。综上所述,本模型实现了性能与参数量之间的良好平衡,为后续在实际环境中番茄叶片病虫害识别系统部署提供可能。
Tomato leaf pest identification based on improved ResNet model
Identifying early tomato leaf diseases and pests is one of the key steps in preventing tomato diseases and pests and increasing yield.This paper is based on the improved ResNet50 to identify tomato leaf pests and diseases.Five different tomato pest datasets were created according to different pest and disease categories,and the data were preprocessed by data augmentation.Based on the original model ResNet50,the SE attention mechanism module is added to the network model structure to enable the model to identify the target to be detected more accurately.In addi-tion,in order to reduce the number of parameters of the model and realize a lighter model,the traditional convolution is replaced by deep separable convolution.In order to illustrate the effectiveness of the improved model,the perform-ance of the improved model on the tomato leaf pest dataset was analyzed,and it was compared with the traditional con-volutional neural networks ResNet50,AlexNet,VGG16,and GoogLeNet.The experimental results show that the im-proved model reduces the number of parameters by 37.5%compared with the original model,and the accuracy reaches 97.4%,and the accuracy rate is increased by 4.4%compared with the original model.In summary,this model a-chieves a good balance between performance and parameter quantity,which provides a possibility for the subsequent deployment of tomato leaf pest identification system in the actual environment.

tomatoleaf pests and diseasesattention mechanismdepth separable convolutionconvolutional neural networksidentify classifications

王圆、祝俊辉、周贤勇、胡敏、侯津津、徐明升、陈琳

展开 >

长江大学计算机科学学院,湖北荆州 434023

番茄 叶片病虫害 注意力机制 深度可分离卷积 卷积神经网络 识别分类

国家自然科学基金

62276032

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(5)
  • 1
  • 20