首页|基于多尺度特征融合的雾天目标检测方法

基于多尺度特征融合的雾天目标检测方法

扫码查看
针对雾天场景下目标检测方法存在漏检、遮挡、准确率低等问题,提出一种基于多尺度特征融合的雾天目标检测算法YOLO-CL-CA。首先,在数据预处理阶段,利用AOD-Net模型对RTTS数据集进行去雾操作,提高图像的细节信息;其次,引入集中式特征金字塔CFPNet(Centralized Feature Pyramid)以深层特征调控浅层特征,捕获图像的关键局部区域,增强模型的图像特征利用能力;然后,在输出层前加入CA注意力机制(Co-ordinate Attention),提高模型捕获小目标特征能力;最后,结合大卷积核构造LKC3模块,改善因遮挡导致的漏检问题。实验结果表明:本算法的精确率和mAP0。5为90。6%和81。7%,比YOLOv5s算法分别提高了 4。2%和1%,证明改进算法对雾天目标检测具有有效性和实用性。
Fog target detection method based on multi-scale feature fusion
Aiming at the problems of missed detection,occlusion and low accuracy of target detection methods in foggy scenes,a foggy target detection algorithm YOLO-CL-CA based on multi-scale feature fusion is proposed.First-ly,in the data pre-processing stage,the AOD-Net model is used to defog the RTTS dataset to improve the image de-tail information.Secondly,a centralized feature pyramid CFPNet(Centralized Feature Pyramid)is introduced to reg-ulate the shallow features with deep features to capture the key local regions of images and enhance the image feature u-tilization capability of the model.Thirdly,the CA attention mechanism(Coordinate Attention)is added before the output layer to improve the model's ability to capture small target features.Finally,the LKC3 module is constructed by combining large convolution kernel to improve the problem of missed detection due to occlusion.The experimental results show that,the accuracy and mAP0.5 of the proposed algorithm are 90.6%and 81.7%respectively,4.2%and 1%higher than these of YOLOv5s,which proves that the improved algorithm is effective and practical for fog target de-tection.

YOLOv5sfeature pyramidattention mechanismlarge convolution kernel

孙锦、尹明锋、谢涛、孟成、贝绍轶

展开 >

江苏理工学院,江苏常州 213001

YOLOv5s 特征金字塔 注意力机制 大卷积核

国家自然科学基金江苏省高等学校自然科学研究面上项目常州市应用基础研究项目

5217236720KJB520015CJ20200039

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(6)
  • 2