首页|基于跨空间多尺度的弱监督有向目标检测算法研究

基于跨空间多尺度的弱监督有向目标检测算法研究

扫码查看
针对当前基于旋转框标注的传统有向目标检测算法对遥感场景下的有向目标检测存在复杂度高、标注成本大等问题,提出了一种基于跨空间多尺度的弱监督有向目标检测算法LSK-EFPN,该算法可利用水平框标注信息推断目标的旋转框信息,实现了复杂遥感场景下的有向目标检测。为提升网络检测能力,该算法采用LSKNet网络提取输入图像先验背景特征,并添加跨空间多尺度注意力模块捕捉跨空间的特征区域,最后使用CIoU作为尺度约束损失函数来对一致性损失进行重构。实验结果表明,LSK-EFPN在遥感场景DIOR数据集上的平均准确率达到61。7%,相对于H2RBox算法提升了 4。7%,为基于水平框标注的有向目标检测场景提供了新的技术解决方案。
Research on weakly supervised directed target detection algorithm based on cross-space multi-scale
Aiming at the problems such as high complexity and high labeling cost of the traditional directed target detection algorithm based on rotating frame labeling,a weakly supervised directed target detection algorithm LSK-EF-PN based on cross-space and multi-scale is proposed,which can infer the rotating frame information of the target by using the horizontal frame labeling information.The directed target detection in complex remote sensing scenarios is re-alized.In order to improve the network detection ability,the algorithm uses LSKNet network to extract the prior back-ground features of input images,and adds a cross-space multi-scale attention module to capture cross-space feature regions.Finally,CIoU is used as a scale-constrained loss function to reconstruct the consistency loss.The experimen-tal results show that the average accuracy of LSK-EFPN on DIOR data set of remote sensing scenes reaches 61.7%,which is 4.7%higher than H2RBox algorithm,providing a new technical solution for directed target detection scenes based on horizontal box marking.

dynamic receptive fieldspatial selection mechanismcross-space multi-scaleweakly supervised directed target detectionremote sensing target

任洋、陈绪君、王磊

展开 >

华中师范大学物理科学与技术学院,武汉 430079

动态感受野 空间选择机制 跨空间多尺度 弱监督有向目标检测 遥感目标

国家自然科学基金湖北省自然科学基金

601012042022CFB474

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(7)
  • 6