首页|基于梯度残差密集块和注意力混洗的红外与可见光图像融合

基于梯度残差密集块和注意力混洗的红外与可见光图像融合

扫码查看
针对当前基于深度学习的红外和可见光图像融合存在提取细粒度细节信息不足、深层特征利用困难的问题,提出了一种基于梯度残差密集块和注意力混洗机制的红外与可见光融合方法。该方法在编码器中加入梯度残差密集块和注意力混洗模块,提升自编码器对图像细粒度细节信息和深层全局特征的提取能力并抑制噪声。在与其他方法的对比实验中,本方法在主观评价上具有良好的细节纹理和全局层次,并可以很好地融合红外与可见光源图像的有效特征;在客观评价上,本算法在标准差、峰值信噪比、视觉保真度、基于边缘信息的指标和小波特征互信息五项取得最优值,分别为76。9275、16。7755、0。8767、0。5141、0。4313。
Infrared and visible image fusion based on gradient residual dense block and shuffle attention
This paper proposes an infrared and visible light fusion method based on gradient residual dense blocks and shuffle attention mechanism to address the problem of insufficient extraction of fine-grained details and difficult u-tilization of deep features in deep learning-based infrared and visible light image fusion.This method incorporates gra-dient residual dense blocks and attention shuffle modules into the encoder,which enhances the ability of the autoen-coder to extract fine-grained details and deep global features and suppress noise.In comparison experiments with other methods,our method shows good performance in subjective evaluation in terms of detail texture and global level,and it effectively fuses the effective features of infrared and visible light source images.In objective evaluation,our algorithm achieves optimal values in five metrics including standard deviation,peak signal-to-noise ratio,visual information fi-delity,QAB/F,and wavelet feature mutual information,which are 76.9275,16.7755,0.8767,0.5141,and 0.4313.

image fusiondeep learningattention mechanismsgradient residual dense block

袁硕智、刘培培、张宇晓、徐湖洋、刘思李

展开 >

成都理工大学,成都 610059

图像融合 深度学习 注意力机制 梯度残差密集块

国家自然科学基金

72101036

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(7)
  • 3