首页|基于深度学习的遥感激光图像特征定位技术

基于深度学习的遥感激光图像特征定位技术

扫码查看
为提高对激光遥感图像特征点定位的准确度,提出基于深度学习算法的遥感激光图像特征定位技术。采用高光谱图模型参数融合和光谱波段图像检测方法,对遥感激光图像进行多频段检测和稀疏化表示,提取多光谱和点云数据,进行不同信息维度的特征重组;采用深度学习算法,动态迭代搜索目标物理和几何特征点。采用图像分割技术聚类处理特征点的复合特征;利用无向图建模特征定位的邻域关系,根据特征聚类和邻域输出表达结果,实现对遥感图像的特征点准确定位。仿真结果表明,采用该方法进行遥感激光图像特征定位的分辨率水平较高,能实现反模糊化的目标特征点定位,定位准确率最高为0。92,点云噪声干扰下,偏移量最高为 6*10-3。
Remote sensing laser image feature localization technology based on deep learning
To improve the accuracy of feature point localization in laser remote sensing images,a remote sensing laser image feature localization technology based on deep learning algorithm is proposed.Using hyperspectral model pa-rameter fusion and spectral band image detection methods,multi frequency band detection and sparse representation are performed on remote sensing laser images,extracting multi-spectral and point cloud data,and recombining fea-tures from different information dimensions;Using deep learning algorithms,dynamically iteratively search for physical and geometric feature points of the target.Using image segmentation technology to cluster and process composite fea-tures of feature points;Using undirected graphs to model neighborhood relationships for feature localization,accurately locate feature points in remote sensing images based on feature clustering and neighborhood output expression results.The simulation results show that using this method for remote sensing laser image feature localization has a high resolu-tion level and can achieve anti blurring target feature point localization,with a maximum positioning accuracy of 0.92.Under the interference of point cloud noise,the maximum offset is 6*10-3.

deep learningremote sensing laserimagefeature localizationimage segmentationground object targets

罗通、王篮仪

展开 >

三亚学院信息与智能工程学院,陈国良院士团队创新中心,海南三亚 572022

三亚学院理工学院,海南三亚 572022

深度学习 遥感激光 图像 特征定位 图像分割 地物目标

海南省自然科学基金

623RC515

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(7)
  • 14