首页|基于PointNet++的邻域特征增强点云语义分割方法

基于PointNet++的邻域特征增强点云语义分割方法

扫码查看
随着智能驾驶、机器人导航等以点云为基础的应用蓬勃发展,点云语义分割逐渐成为研究热点。然而,现有的点云语义分割方法存在局部特征提取不充分、特征融合不完整的缺陷。针对这些不足,提出了对应的解决方案。对于局部特征提取不充分的现象,通过嵌入邻域点的坐标、方向、距离等相关信息去关联邻域点的显式特征。对于特征融合不完整的现象,提出了 一种最大池化与自注意力池化相结合的混合池化方法。网络架构基于PointNet++,并结合提出的局部特征提取和融合方法,在S3DIS数据集上的实验结果表明,与基线方法PointNet++相比,各评价指标都有不同程度的提高,证实了新方法的有效性和优越性。
A neighborhood feature-enhanced point cloud semantic segmentation method based on PointNet++
With the booming development of point cloud-based applications such as intelligent driving and robot navigation,semantic segmentation of point clouds has gradually become a hotspot of research.However,the existing methods for semantic segmentation of point clouds suffer from the shortcomings of insufficient local feature extraction and incomplete feature fusion.To address these shortcomings,we propose corresponding solutions.For the phenome-non of insufficient local feature extraction,the explicit features of neighboring points are associated by embedding the coordinates,directions,distances and other relevant information of the neighboring points.For the phenomenon of in-complete feature fusion,a hybrid pooling method combining maximum pooling and self-attention pooling is proposed.The network architecture in this paper is based on PointNet++and is combined with the proposed local feature extrac-tion and fusion method.The experimental results on the S3DIS dataset show that the evaluation indices have been im-proved to different degrees compared with baseline PointNet++method,which confirms the effectiveness and superiori-ty of new method.

3D point cloudsemantic segmentationfeature extractiondeep learning

李松、张安思、伍婕、张保

展开 >

贵州大学省部共建公共大数据国家重点实验室,贵阳 550025

贵州大学机械工程学院,贵阳 550025

三维点云 语义分割 特征提取 深度学习

国家自然科学基金地区科学基金项目贵州省科技计划项目贵州省教育厅高等学校集成攻关大平台项目贵州大学引进人才科研项目

52365061黔科合基础-ZK[2023]一般059黔教合KY字[2020]005贵大人基合字202174号

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(7)