首页|基于卷积神经网络的光信噪比监测方法

基于卷积神经网络的光信噪比监测方法

扫码查看
光信噪比(OSNR)与光纤通信的传输性能息息相关,因此,OSNR监测是光性能监测技术中至关重要的一环,同时,传输链路中的色散会导致光信号脉冲展宽,使OSNR监测准确性下降。针对这一问题,设计了一种卷积神经网络模型,以异步延迟采样图(ADTP)作为网络输入特征,引入实例批量标准化模块,继承了神经网络不同深度下特征发散分布的优点,提高了神经网络对色散变化的适应性。实验结果表明,在10 Gb/s NRZ-OOK信号无色散干扰监测场景下,该模型的平均绝对误差(MAE)为0。2dB,在色散变化的场景下,MAE最高降低了 0。61 dB。
Optical signal-to-noise ratio monitoring method based on convolutional neural network
Optical signal-to-noise ratio(OSNR)is closely related to the transmission performance of optical fiber communication,so OSNR monitoring is a crucial part of optical performance monitoring technology.At the same time,the dispersion in the transmission link will lead to the broadening of optical signal pulses,which will reduce the accu-racy of OSNR monitoring.Aiming at this problem,a convolutional neural network model is designed.The asyn-chronous delay sampling graph(ADTP)is used as the network input feature,and the instance batch standardization module is introduced.It inherits the advantages of feature divergence distribution at different depths of the neural net-work and improves the adaptability of the neural network to dispersion changes.The experimental results show that the mean absolute error(MAE)of the model is 0.2 dB in the case of 10 Gb/s NRZ-OOK signal without dispersion inter-ference monitoring,and the MAE is reduced by 0.61 dB at most in the case of dispersion change.

optical signal-to-noise ratiodispersive interferenceconvolutional neural networkinstance-batch normalizationrobustness

何润泽、朱禧月、程昱

展开 >

广东工业大学信息工程学院,广州 510006

光信噪比 色散干扰 卷积神经网络 实例批标准化 鲁棒性

国家重点研发计划国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金广东省基础与应用基础研究基金

2020YFB1806401U2001601U22A208711904057620040472023B1515020088

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(7)
  • 10