首页|基于改进Vision Transformer的复合涡旋光束识别

基于改进Vision Transformer的复合涡旋光束识别

扫码查看
为提高涡旋光通信的编码效率和解码正确率,使用两束携带不同相邻轨道角动量和径向指数的涡旋光叠加产生16种形状相似的光强分布图并用4位二进制对其进行编码,为针对大气湍流对光强分布的影响,提出了使用稀疏注意力算法优化的Vision Transformer神经网络模型,将受强湍流影响下的光强分布图作为输入进行训练,从而实现对畸变的信息进行精确识别。仿真实验表明:该模型在识别受较强程度湍流影响的涡旋光束的正确率可达95。5%且对局部细节分辨更加准确;并验证强湍流条件下,不同波长、传输距离下的识别准确率均有良好表现,体现了模型的鲁棒性和泛用性。
Composite vortex beam recognition based on improved Vision Transformer
To improve the coding efficiency and decoding correctness of vortex optical communication.In this pa-per,two vortex light beams carrying different low orbit Angular momentum and radial index are used to stack to pro-duce 16 different light intensity distribution maps,which are encoded with 4-bit binary.To address the impact of at-mospheric turbulence on light intensity distribution,a Vision Transformer neural network model optimized by sparse at-tention algorithm is proposed,and the light intensity distribution map affected by strong turbulence is used as input for training,Thus achieving accurate identification of distorted information.The simulation experiment shows that the ac-curacy of this model in identifying vortex beams affected by strong turbulence can reach 95.5%and it is more accurate in resolving local details.The model excelled in recognizing accuracy despite strong turbulence,showcasing its robust-ness and universality across wavelengths and distances.

vortex beamorbital angular momentumradial indexneural network

张成志、曹阳、涂巧玲、彭小峰

展开 >

重庆理工大学电气与电子工程学院,重庆 400054

涡旋光束 轨道角动量 径向指数 神经网络

重庆市教委基金项目重庆市教委科学技术项目重庆市教委科学技术研究项目重庆市研究生科研创新项目

KJ120827KJ1500934KJ1709205CYS23667

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(7)
  • 5