首页|基于深度学习的室内点云语义分割研究进展

基于深度学习的室内点云语义分割研究进展

扫码查看
点云是一种被广泛使用的三维数据,而语义分割作为三维场景理解的关键技术,人们对其的需求也越来越广泛。近三年来,点云语义分割技术的发展迅速,为了展示基于深度学习的室内场景三维点云语义分割方面的进展,着重整理了其近三年最新的研究动向。首先介绍了点云语义分割常用的数据集以及评价指标,接着对近三年的各种点云语义分割方法进行分类,并从间接、直接处理点云的角度,按照不同类别分析总结了各种方法的框架结构以及其创新点,在S3DIS、ScanNet等几种最常使用的室内数据集上对各种算法的mIou等评价指标进行了对比展示。最后,根据现有的点云的语义分割技术的研究现状和存在的问题进行了总结以及展望。
Research progress on semantic segmentation of indoor point cloud based on deep learning
Point cloud is a kind of widely used 3D data,and semantic segmentation,as a key technology for 3D scene understanding,is increasingly in demand.In the past three years,point cloud semantic segmentation technology has been developing rapidly,and in order to show the progress in deep learning-based 3D point cloud semantic seg-mentation for indoor scenes,the latest research trends in the past three years are highlighted.Firstly,we introduce the commonly used datasets and evaluation indexes for point cloud semantic segmentation,then we classify the various point cloud semantic segmentation methods in the past three years,analyze and summarize the framework structure of the methods and their innovations according to different categories from the perspective of indirectly and directly dealing with point clouds,and compare and contrast the evaluation indexes of the various algorithms on several most commonly used indoor datasets,such as S3DIS,ScanNet,etc.,such as the mIou indexes.metrics are compared and demonstra-ted.Finally,the current research status and existing problems of semantic segmentation techniques for point clouds are summarized and outlooked.

point cloud dataindoor scenesemantic segmentationdeep learning

李新、孙钰奇、宋刘广、曾佳全

展开 >

桂林理工大学信息科学与工程学院,广西桂林 514004

桂林理工大学广西嵌入式技术与智能系统重点实验室,广西桂林 514004

点云数据 室内场景 语义分割 深度学习

广西科技计划广西嵌入式技术与智能系统重点实验室开放基金

2020GXNSFAA2972552020-2-6

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(8)
  • 8