首页|基于改进YOLOv5的钢筋视觉计数系统设计

基于改进YOLOv5的钢筋视觉计数系统设计

扫码查看
随着理计计重成为钢贸交易的主流计重方式,快速精准的钢筋智能计数系统成为研究热点。提出了基于边云协同架构的钢筋视觉计数系统设计方案。该系统利用移动端拍摄钢筋影像,对影像进行背景剔除、尺寸调整等预处理后上传至云端;云端利用一种改进的YOLOv5钢筋检测模型对影像中的钢筋进行智能检测,并将结果反馈至移动端;移动端经过人工检查修正后,即可得到高可信度的计数结果。根据在SPDC库的测试结果,系统的计数正确率可达99。85%,高于人工计数的平均正确率;每千根钢筋计数时间为26。50 s,显著低于人工计数的平均时间。
Design of visual rebar detection system based on an improved YOLOv5
Theoretical weight is the mainstream weight calculation method in current steel trade,thus a fast and accurate AI based rebar counting system has become a critical research issue.A design scheme of visual rebar counting system based on cloud-edge collaboration is proposed.The system uses a mobile terminal to capture rebar images,performs preprocessing including background removal and size adjustment,and uploads them to the cloud;The cloud uses a detection model based on an improved YOLOv5 to detect and count the rebars in the image,and feeds back the counting results to the mobile terminal.According to the test results in the SPDC,the counting accuracy of the pro-posed system can reach 99.85%after manual correction,which is higher than the average accuracy of manual count-ing.The time cost of intelligent counting per 1 000 rebars is 26.50 seconds after manual correction,significantly lower than the average time of manual counting.

artificial intelligencerebar countingcloud-edge collaborationYOLO

谢方立、李正浩、赵迅逸、张政、郑力菥、林熙翔、李向东

展开 >

重庆工程学院,重庆 400056

国科大重庆学院,重庆 400714

中国科学院重庆绿色智能技术研究院,重庆 400714

重庆因普乐科技有限公司,重庆 404100

展开 >

人工智能 钢筋计数 边云协同 YOLO

国家重点研发计划国家自然科学基金

2018YFC082350362106247

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(8)
  • 9