首页|机器学习的高精度毫米波雷达测距信号误差补偿方法

机器学习的高精度毫米波雷达测距信号误差补偿方法

扫码查看
毫米波雷达是一种常用的非接触式测距技术,受环境因素以及测量过程中存在的各种误差影响,测距结果可能存在一定的误差。研究误差补偿方法可以有效提高毫米波雷达的测距精度,从而更准确地获取目标物体的距离信息。为此,提出了机器学习的高精度毫米波雷达测距信号误差补偿方法。通过高斯滤波器去除雷达测距信号中的噪声,完成信号的去噪处理。利用模拟插入脉冲计数法和四象限光斑定位法,测量目标物体的距离和角度信息,通过自适应惯性权重与收敛因子优化粒子群算法,并利用优化后的粒子群算法改进BP神经网络,将测量的距离和角度信息输入到改进的BP神经网络中展开训练,即可得到补偿后的雷达测距信号。实验结果表明,该方法的信号处理效果好,补偿后的毫米波雷达测距信号方位角和俯仰角误差接近于0,且信号平滑度较高。
Machine learning based high-precision millimeter wave radar ranging signal error compensation method
Millimeter wave radar is a commonly used non-contact ranging technology.Due to environmental fac-tors and various errors in the measurement process,the ranging results may have certain errors.Studying error compen-sation methods can effectively improve the ranging accuracy of millimeter wave radar,thereby obtaining more accurate distance information of target objects.Therefore,a high-precision millimeter wave radar ranging signal error compen-sation method based on machine learning is proposed.The noise in the radar ranging signal is removed through a Gaussian filter,and the signal denoising process is completed.The distance and angle information of the target object is measured using simulated insertion pulse counting method and four quadrant spot positioning method.The particle swarm optimization method is optimized through adaptive inertia weight and convergence factor,and the optimized par-ticle swarm algorithm is used to improve the BP neural network,by inputting the measured distance and angle informa-tion into an improved BP neural network for training,the compensated radar ranging signal can be obtained.The ex-perimental results show that the signal processing effect of this method is good,and the azimuth and elevation errors of the compensated millimeter wave radar ranging signal are close to 0,and the signal smoothness is high.

machine learningmillimeter wave radarerror compensationgaussian filterBP neural network

李淑玲、姚香秀、张俊丽

展开 >

西安欧亚学院,西安 710065

机器学习 毫米波雷达 误差补偿 高斯滤波器 BP神经网络

陕西省教育厅科研计划专项项目陕西省"十四五"教育科学规划2023年度课题

21JK0259SGH23Y2824

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(8)