激光杂志2024,Vol.45Issue(12) :1-15.DOI:10.14016/j.cnki.jgzz.2024.12.001

基于编码压缩的快照式高光谱成像技术综述

The review of snapshot hyperspectral imaging technology based on coded compression

谢辉 段萌 武伟 张运强 潘国庆 王炜强 穆世博
激光杂志2024,Vol.45Issue(12) :1-15.DOI:10.14016/j.cnki.jgzz.2024.12.001

基于编码压缩的快照式高光谱成像技术综述

The review of snapshot hyperspectral imaging technology based on coded compression

谢辉 1段萌 1武伟 1张运强 1潘国庆 1王炜强 1穆世博2
扫码查看

作者信息

  • 1. 中国空空导弹研究院,河南 洛阳 471009
  • 2. 空装驻洛阳地区第一军事代表室,河南 洛阳 471009
  • 折叠

摘要

快照压缩成像技术可以在单次曝光成像获得目标的三维空间-光谱信息,相对于传统的扫描式成像方式,在针对运动目标的检测与识别中优势显著.伴随着信息理论与技术的发展和计算机处理性能的提升,计算成像逐渐成为解决光学成像问题的关键技术之一.通过建立成像设备的物理模型并对后端处理进行数学优化,可以突破成像模型和探测器的局限,将传统的二维成像推广至更多的观测维度.这篇文章从空间编码、波长编码和相位编码三个方面综述基于编码压缩的快照式高光谱成像技术的研究现状,归纳并分析了传统方法和深度学习方法的发展趋势,并对基于编码压缩的快照式高光谱成像技术的发展进行展望.

Abstract

Snapshot compression imaging technology can obtain the three-dimensional spatial-spectral information from the target within a single exposure imaging,which has a significant advantage in the detection and identification for moving targets compared with the traditional scanning imaging method.With the development of information tech-nology and computer processing performance,computational imaging has gradually become one of the most important technologies for solving optical imaging problems.By building a physical model of the imaging device and mathemati-cally optimizing the back-end processing,which can break through the limitations of the imaging model and detector,the traditional two-dimensional imaging can be extended to more observation dimensions.In this paper,the current re-search status of snapshot hyperspectral imaging technology based on coding compression is summarized from three as-pects:spatial coding,wavelength coding and phase coding.And we summarize and analyze the development trend of traditional methods and deep learning methods,as well as look forward to the development of snapshot hyperspectral imaging technology based on coding compression.

关键词

光谱成像/快照压缩成像/计算成像/孔径编码/深度学习

Key words

spectral imaging/snapshot compressed imaging/computational imaging/coded aperture/deep learn-ing

引用本文复制引用

出版年

2024
激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
段落导航相关论文