首页|改进YOLOv5s算法的遥感图像旋转目标检测

改进YOLOv5s算法的遥感图像旋转目标检测

扫码查看
遥感图像目标检测技术广泛应用于矿产勘探、交通运输、国防军事、应急救援救灾等领域中。但是,常见的适用于遥感图像的旋转目标检测算法模型偏大,部署难度高,也无法满足实时检测的要求,忽略了精度和速度之间的平衡。针对以上问题,提出了一种基于YOLOv5s的遥感图像旋转目标检测算法YOLOv5s-R。首先,在YOLOv5s的基础上添加角度参数,将水平检测框修改成旋转检测框,以适应遥感图像目标的角度多样性;其次,引入环形圆滑标签,规避角度回归的周期性带来的角度突变问题;然后,添加高效通道注意力机制模块,提升模型对重要特征的提取能力;最后引入自适应空间特征融合模块,解决特征金字塔内部的不同特征尺度之间的不一致性问题。在数据集DOTA上,实验结果显示:mAP50 达到了 75。6%,mAP50∶95 达到了 46。7%,FPS达到了81。9。与基础模型相比,mAP50 和mAP50∶95 分别提升了 1%和 3。1%,FPS 提升了 85。9%。因此,YOLOv5s-R实现了更准确更高速的遥感图像检测,达到了精度和速度的良好平衡。
Improved YOLOv5s Algorithm for rotation object detection in remote sensing images
Remote sensing images object detection is used in mineral exploration,transportation,national defense and military,emergency rescue and disaster relief and other fields.However,the common rotation object detection al-gorithm model applicable to remote sensing images is too large,difficult to deploy and can not meet the requirements of real-time detection,ignoring the balance between accuracy and speed.To solve the above problems,a rotation object detection algorithm YOLOV5s-R based on YOLOv5s is proposed.Firstly,angle parameters were added on the basis of YOLOv5s,then the horizontal bounding box was modified into oriented bounding box to adapt to the angular diversity of remote sensing image objects.Secondly,the Circular Smooth Label was introduced to avoid the angle mutation prob-lem caused by the periodicity of angle regression.Then,the Efficient Channel Attention module was introduced to im-prove the ability of the model to extract important features.Finally,the Adaptively Spatial Feature Fusion module was introduced to solve the inconsistencies between different feature scales inside the feature pyramid.On the dataset DOTA,the experimental results show that the mAP50 reaches 75.6%,the mAP50∶95 reaches 46.7%,and the FPS rea-ches 81.9.Compared with the base model,mAP50 and mAP50∶95 increased by 1%and 3.1%respectively,and FPS in-creased by 85.9%.Therefore,YOLOv5s-R achieves more accurate and high-speed remote sensing images detection,achieving a good balance between accuracy and speed.

remote sensing imagesYOLOv5sro-tation object detectionattention mechanismfeature fu-sion

刘冰冰、胡耀国、闫鹏、张青林

展开 >

华中师范大学物理科学与技术学院,武汉 430079

中国科学院西安光学精密机械研究所,西安 710068

遥感图像 YOLOv5s 旋转目标检测 注意力机制 特征融合

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)