首页|基于毫米波雷达的多运动目标体征检测方法研究

基于毫米波雷达的多运动目标体征检测方法研究

扫码查看
针对毫米波雷达非接触目标体征检测,通过模拟实验对快速运动的多目标场景进行了研究。首先获取目标位置和速度的量测信息,并通过创新的算法获得每个量测距离和角度间的对应关系,再分别用联合概率数据关联算法(JPDA)和最近邻数据关联算法(NNDA)对多目标进行跟踪,之后提取其体征相位信息,使用短时傅里叶变换算法对处理后的体征信号进行频率估计。通过实验可知,对于速度最高可达 0。9 m/s的运动目标,通过此检测方法可以以较小的误差得到目标的呼吸频率;而由于心跳信号相对微弱,只能在静止状态中检测到。此方法相比其他雷达体征检测方法能以0。035 Hz的均方根误差检测速度最高可达0。9 m/s的变速运动目标的呼吸频率,且可同时检测多个目标并不易混淆。
Research on signs detection of multi-moving targets with millimeter wave radar
For non-contact target sign detection by millimeter wave radar,a fast-moving multi-target scene was studied through simulation experiments.First,the measurement information of the target position and speed is ob-tained,and the corresponding relationship between each measurement distance and angle is obtained through an inno-vative algorithm,and then the joint probabilistic data association(JPDA)and nearest neighbor data association(NN-DA)are used respectively.Multiple targets are tracked,and then their sign phase information is extracted,and the short-time Fourier transform algorithm is used to estimate the frequency of the processed sign signal.Through experi-ments,it can be seen that for moving targets with speeds up to 0.9 m/s,this detection method can obtain the target's breathing frequency with a small error;however,because the heartbeat signal is relatively weak,it can only be detec-ted in a static state.Compared with other radar sign detection methods,this method can detect the breathing frequency of the speed of 0.9 m/s at a root mean square error detection rate of 0.035,and can detect multiple targets simultane-ously without being easily confused.

modulated continuous wave radarshort-time fourier transformmulti-targetsign detectiondata association

张晓楠、庞亚军、郎利影

展开 >

河北工业大学先进激光技术研究中心,天津 300401

河北省先进激光技术与装备重点实验室,天津 300401

调制连续波雷达 短时傅里叶变换 多目标 体征检测 数据关联算法

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)