首页|基于跨域Mixup和自监督学习的少样本高光谱图像分类

基于跨域Mixup和自监督学习的少样本高光谱图像分类

扫码查看
针对目标域标记样本稀缺引起的模型泛化性能不佳问题,提出了一种基于跨域Mixup和自监督学习的少样本高光谱图像分类方法。首先,利用少样本学习从源域提取更有利于目标域分类的元知识。其次,将Mixup技术应用到少样本学习中,将源域和目标域的查询集进行特征级Mixup,通过源域数据扩展目标域数据的分布,增加目标域数据的多样性,从而提高模型的泛化性能。最后,通过目标域自监督学习来约束少样本学习过程,以获取更鲁棒的特征表示,进而缓解模型的过拟合问题。在两个公共高光谱数据集上进行了大量实验,与现有主流方法相比,所提方法平均准确率分别提升了3。2%和3。6%以上。
Few-shot hyperspectral image classification based on inter-domain mixup and self-supervised contrastive learning
Aiming at the problem of poor model generalization performance caused by the scarcity of labeled sam-ples in the target domain,a few-shot hyperspectral image classification method based on cross-domain mixup and self-supervised learning(FSC-CMS)is proposed.First,few-shot learning is used to extract meta-knowledge from the source domain that is more beneficial to target domain classification.Secondly,apply Mixup technology to few-shot learning,perform feature-level Mixup on the query sets of the source and target domains,expand the distribution of the target domain data through the source domain data,increase the diversity of the target domain data,and thus im-prove the generalization performance of the model.Finally,the few-shot learning process is constrained through self-supervised learning in the target domain to obtain a more robust feature representation,thereby alleviating the over-fit-ting problem of the model.A large number of experiments were conducted on two public hyperspectral datasets.Com-pared with existing mainstream methods,the average accuracy of the proposed method increased by more than 3.2%and 3.6%respectively.

hyperspectral imagecross-domain classificationfew-shot learningMixupself-supervised learn-ing

王岩、张晨阳、李照奎

展开 >

沈阳航空航天大学计算机学院,沈阳 110136

高光谱图像 跨域分类 少样本学习 Mixup 自监督学习

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)