首页|基于混合注意力残差密集网络的红外与可见光图像融合

基于混合注意力残差密集网络的红外与可见光图像融合

扫码查看
针对红外与可见光图像融合算法在融合过程中细节信息特征易丢失的问题,提出了一种基于混合注意力残差密集网络的红外与可见光图像融合算法。首先编码网络对源图像进行不同尺度的下采样,得到带有丰富语义信息的特征图;然后混合注意力残差融合网络对编码网络提取的特征图进行融合,混合注意力机制通过通道注意力和空间注意力混洗对特征图进行聚合,并利用残差密集连接对聚合的特征图最大程度地保留图像有效信息;最后在解码网络通过上采样进行重构得到融合图像。与其他融合算法相比,在主观评价中,所提算法的融合图像在清晰度方面表现出明显的优势,尤其在处理模糊、受挡光和烟雾等复杂情况下的图像时,融合效果良好;在客观指标对比中,所提算法的融合图像在信息熵、互信息、峰值信噪比等指标均有不同程度的提升并取得最优值,分别为6。930、13。860、17。144、0。574。
Infrared and visible image fusion based on shuffle attention mechanism and residual dense network
Aiming at the problem that detailed information features are easy to be lost in the fusion process of infra-red and visible image fusion algorithm,this paper proposes an infrared and visible image fusion algorithm based on shuffle attention mechanism and residual dense network.Firstly,the encoding network downsamples the source image at different scales to obtain the feature map with rich semantic information.Then the shuffle attention residual fusion network fuses the feature map extracted from the encoding network,and the shuffle attention mechanism aggregates the feature maps through the channel attention and spatial attention shuffling,and utilizes the residual dense connection to maximize the retention of effective image information on the aggregated feature maps.Finally,the decoding network re-constructs the image map through up-sampling.Compared to other fusion algorithms,the fusion images produced by the algorithm proposed in this paper demonstrate a clear advantage in terms of clarity,especially when dealing with complex situations such as blur,occlusion,and smoke,as evidenced by subjective evaluations.This suggests that the algorithm may have a competitive edge in the field of image fusion,particularly in generating clearer fusion results when handling images under complex conditions.In the objective index comparison,the fused images of the algorithm proposed in this paper have different degrees of improvement and achieve the optimal value in the index criteria of en-tropy,mutual information and peak signal-to-noise ration,which are 6.930,13.860,17.144 and 0.574,respectively.

infrared and visibleauto-encoderingshuffle attentionresidual dense network

刘培培、张宇晓、袁硕智、王烁、徐湖洋

展开 >

成都理工大学,成都 610059

红外与可见光图像融合 自编码网络 混合注意力 残差密集网络

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)