首页|基于条件生成对抗网络的激光图像轮廓线特征提取方法

基于条件生成对抗网络的激光图像轮廓线特征提取方法

扫码查看
在提取图像轮廓线特征的过程中,受噪声的干扰会导致特征之间的依赖关系不明显,影响了特征信息提取结果的准确性。因此,提出基于条件生成对抗网络的激光图像轮廓线特征提取方法。首先,选取二维Otsu函数作为蜂群算法的适应性评价指标,针对初始化种群和蜜蜂搜索策略展开优化;然后,利用正余弦法与改进后的蜂群算法,通过搜索全局最优解获得激光图像的最佳分割阈值;最后,为了捕捉特征之间的全局依赖关系,在条件生成对抗网络中集成处理残差结构与分层空洞卷积模块,结合交叉注意力模块,确保激光图像轮廓线的流畅性。同时,通过运用谱归一化技术和Leaky激活函数,有效稳定模型的训练过程,提高激光图像轮廓线特征提取的全面性和准确性。实验结果表明,该方法可以获取高准确率的激光图像轮廓线特征提取结果。
A laser image contour feature extraction method based on conditional generative adversarial networks
In the process of extracting image contour features,interference from noise can lead to unclear depend-ency relationships between features,which affects the accuracy of feature information extraction results.Therefore,a laser image contour feature extraction method based on conditional generative adversarial networks is proposed.Firstly,the two-dimensional Otsu function is selected as the adaptability evaluation index of the bee colony algorithm,and op-timization is carried out for the initialization population and bee search strategy;Then,using the sine and cosine meth-od and the improved bee colony algorithm,the optimal segmentation threshold of the laser image is obtained by search-ing for the global optimal solution;Finally,in order to capture the global dependency relationship between features,residual structures and layered dilated convolution modules are integrated into the conditional generative adversarial network,combined with cross attention modules to ensure the smoothness of laser image contour lines.Meanwhile,by utilizing spectral normalization techniques and Leaky activation functions,the training process of the model is effective-ly stabilized,improving the comprehensiveness and accuracy of laser image contour feature extraction.The experimen-tal results show that this method can obtain high-precision contour feature extraction results from laser images.

conditional generative adversarial networklaser imagingcontour line featuresfeature extraction

徐赛华、侯利霞、丁小峰

展开 >

南昌工学院信息与人工智能学院,南昌 330108

条件生成对抗网络 激光图像 轮廓线特征 特征提取

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)