首页|视觉传达下的低分辨率激光图像高分辨率重建方法

视觉传达下的低分辨率激光图像高分辨率重建方法

扫码查看
当前低分辨率激光图像重建效果不理想,重建精度低,重建时间过长,为了克服当前低分辨率激光图像重建的缺陷,以提高低分辨率激光图像重建精度为目标,提出了视觉传达下的低分辨率激光图像高分辨率重建方法。首先采集待重建的低分辨率激光图像,并采用小波变换算法对原始低分辨率激光图像进行预处理,消除噪声对激光图像干扰,然后采用Retinex理论对预处理后的激光图像进行重建,并引入视觉传达技术的直方图均衡化法改善激光图像的对比度,最后进行了低分辨率激光图像重建仿真实验,实验结果表明:本方法较好地解决了低分辨率激光图像重建过程中难题,激光图像清晰度得到了明显改善,结构相似性超过了 0。97,峰值信噪比达到了28 dB以上,激光图像重建时间控制在10 s以内,重建整体性能要远远优于其他低分辨率激光图像重建方法,具有更高的实际应用价值。
A high-resolution reconstruction method for low resolution laser images under visual communication
The current low resolution laser image reconstruction effect is not ideal,resulting in low reconstruction accuracy and long reconstruction time.In order to overcome the shortcomings of current low resolution laser image re-construction and improve the accuracy of low resolution laser image reconstruction,a low resolution laser image high-resolution reconstruction method based on visual communication is proposed.Firstly,the low resolution laser image to be reconstructed is collected,and the wavelet transform algorithm is used to preprocess the original low resolution laser image to eliminate noise interference.Then,Retinex theory is used to reconstruct the preprocessed laser image,and the histogram equalization method of visual communication technology is introduced to improve the contrast of the laser image.Finally,a low resolution laser image reconstruction simulation experiment is conducted,and the experimental results show that the method proposed in this paper effectively solves the problem of low resolution laser image recon-struction.The clarity of the laser image is significantly improved,the structural similarity exceeds 0.97,the peak sig-nal-to-noise ratio reaches 28 dB or more,and the laser image reconstruction time is controlled within 10 s.Moreover,the overall performance of the reconstruction is far superior to other low resolution laser image reconstruction methods,and it has higher practical applications value.

low resolutionvisual communication technologylaser imagingwavelet transform algorithmpeak signal-to-noise ratioimage similarity

申迎迎、吴呈珂

展开 >

河南科技学院,河南 新乡 453003

河南师范大学材料科学与工程学院,河南 新乡 453007

低分辨率 视觉传达技术 激光图像 小波变换算法 峰值信噪比 图像相似度

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)