首页|基于相位型正弦光栅的涡旋光阵列产生及优化

基于相位型正弦光栅的涡旋光阵列产生及优化

扫码查看
首先通过理论推导出了二维正弦光栅的衍射场分布,并基于夫琅和费衍射理论,得到了拉盖尔-高斯光束通过该光栅的目标平面场分布表达式。数值模拟结果表明,当拉盖尔-高斯光束通过由两频率、周期均相等的一维光栅正交叠加生成的二维相位型正弦光栅调制后,在目标平面处产生了由相同拓扑荷涡旋光束组成的N∗N涡旋光束阵列,但不同衍射级次的涡旋光强度不等。为弥补这一缺陷,使用模拟退火算法对光栅进行优化,得到了光强不均匀度0。11‱,衍射效率81%的3∗3 阵列;光强不均匀度0。03‱,衍射效率72%的4∗4阵列及光强不均匀度5%,衍射效率 71%的 5∗5 阵列。结果表明,该方法生成涡旋光阵列具有简便性和实用性,这将为相同拓扑荷数涡旋光阵列的应用增加技术支持。
Generation and optimization method of vortex beam array based on phase sinusoidal grating
Firstly,the diffraction field distribution of a two-dimensional sinusoidal grating is derived through theo-retical deduction,and based on the Fraunhofer diffraction theory,the expression of the field distribution in the target plane for a Laguerre-Gaussian beam passing through the grating is obtained.The numerical simulation results show that when a Laguerre-Gaussian beam passes through a two-dimensional phase sinusoidal grating generated by orthogo-nal overlapping of two one-dimensional gratings with same frequency and period,an N∗N array of vortex beams con-sisting of the same topological charge is generated at the target plane.However,the intensities of vortex beams with different diffraction orders are unequal.To overcome this drawback,the grating is optimized using the Simulated An-nealing algorithm.A 3∗3 array with optical intensity inhomogeneity of 0.11‱ and diffraction efficiency of 81%,a 4∗4 array with optical intensity inhomogeneity of 0.03‱ and diffraction efficiency of 72%,and a 5∗5 array with op-tical intensity inhomogeneity of 5%and diffraction efficiency of 71%are obtained.The results demonstrate the simplic-ity and practicality of this method for generating vortex beam array,which will provide technical support for the appli-cation of vortex beam array with the same topological charge.

vortex beam arrayphase sinusoidal gratingsimulated annealingoptimized design

吴雪蒙、赵冬娥、马亚云、褚文博

展开 >

中北大学信息与通信工程学院,太原 030051

中北大学电子测试技术国家重点实验室,太原 030051

中北大学机电工程学院,太原 030051

涡旋光阵列 相位型正弦光栅 模拟退火算法 优化设计

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)