首页|基于MobileNetV3网络的轻量级激光雷达点云图像语义分割

基于MobileNetV3网络的轻量级激光雷达点云图像语义分割

扫码查看
针对当前激光雷达点云图像语义分割方法处理速度与精度难以平衡,占用计算资源庞大的问题,开展了基于球面投影的轻量级算法研究。首先利用球面投影将3D点云投影至二维平面,然后设计了基于Mo-bileNetV3 的轻量化二维语义分割网络MobileSeg对投影图进行分割,最后将分割结果反投影至 3D点云空间。算法利用对点云图像降维和轻量化的骨干网络减少了对计算资源的占用,同时避免了将稀疏点云直接输入到神经网络中进行特征提取时面临的各种困难。该算法在 SemanticKITTI 数据集上的平均交并比(mIOU)为51。7%,MobileSeg-S和MobileSeg-L模型的参数量分别为0。9 M和3。2 M,实现了准确、轻量的LiDAR点云图像语义分割,在自动驾驶领域具有一定应用前景。
Semantic segmentation of lightweight LiDAR point cloud images based on MobileNetV3 network
To meet the challenge that the current semantic segmentation methods of LIDAR point cloud image are difficult to balance the processing speed and accuracy,and takes up huge computing resources,a lightweight algorithm based on codec structure is studied.This study firstly uses spherical projection to project 3D point clouds to two-di-mensional planes,then designs a lightweight two-dimensional semantic segmentation network MobileSeg based on Mo-bileNetV3 to segment projection map,and finally projects the segmentation results back to the 3D point cloud.The al-gorithm reduces the occupation of computing resources by reducing the dimensionality of point cloud images and light-weight backbone networks,and avoids various difficulties faced when using neural networks to directly extract features from sparse point clouds.The average intersectional union ratio(mIOU)of the algorithm on the SemanticKITTI dataset is 51.7%,and the parameters of the MobileSeg-S and MobileSeg-L models are 0.9M and 3.2 M,respectively.The accurate and lightweight point cloud semantic segmentation method has a certain application prospect in the field of au-tomatic driving.

autonomous drivingpoint cloudMobileNetV3semantic segmentationLIDAR

郝夏楠、庞亚军、麻月欣、张继文

展开 >

河北工业大学先进激光技术研究中心,天津 300401

河北省先进激光技术与装备重点实验室,天津 300401

自动驾驶 点云 MobileNetV3 语义分割 激光雷达

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)