首页|基于优化假设集的两阶段视频压缩感知重构

基于优化假设集的两阶段视频压缩感知重构

扫码查看
压缩感知由于只需要极少量的观测值即可实现对原始信号的重构,目前被逐步应用在光学成像系统中。针对已有的重构算法在采样资源受限的视频成像系统中重构精度不高的问题,提出一种阶段式重构算法。第一阶段以重构后的关键帧为参考帧,对非关键帧进行运动补偿与残差重构,再将其分组并进行质量增强后输出;第二阶段对于输入的非关键帧,从当前帧及其前后关键帧中动态挑选多假设匹配块,建立残差稀疏模型并完成重构,输出重构视频。实验结果表明,本算法的平均PSNR值达到 41。5 dB以上;平均SSIM值达到0。97 以上,都比现有几种优秀重构算法有较大的提升。与最具代表性的多假设算法相比,本算法的平均PSNR值和平均SSIM值分别提高了9。1%和17。3%左右,获得了更好的视频重构质量。
Two-stage video compression sensing reconstruction based on optimized hypothesis set
Compressed sensing is gradually applied to optical imaging systems because it only needs a very small number of observations to reconstruct the original signal.Aiming to address the problem that the existing reconstruction algorithms have low reconstruction accuracy in video imaging systems with limited sampling resources,a phased recon-struction algorithm is proposed.In the first stage,the algorithm uses the reconstructed keyframes as reference frames to reconstruct the non-key frames through motion compensation and residual reconstruction.After this,it groups the re-constructed non-key frames,enhances them further,and outputs them.In the second stage,the algorithm dynamically selects multi-hypothesis matching blocks from the current frame and the keyframes before and after for the non-key frames reconstructed in the first stage.It then establishes a residual sparse model and completes the reconstruction to output the video reconstruction results.The experimental results show that the average PSNR value of this algorithm is above 41.5 dB,and the average SSIM value is above 0.97.These values represent significant improvements compared to several existing excellent reconstruction algorithms.Compared with the most representative multi-hypothesis algo-rithm,the average PSNR value and average SSIM value of this algorithm are improved by about 9.1%and 17.3%re-spectively,leading to better video reconstruction quality.

compressed sensingvideo imagingstage-based reconstructionkeyframeresidual sparse model

濮广磊、贾华宇、罗飚

展开 >

太原理工大学电气与动力工程学院,太原 030024

武汉光迅科技股份有限公司,武汉 430074

压缩感知 光学成像 阶段式重构 关键帧 残差稀疏模型

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(12)