首页|基于投票加权GS-KNN的离心风机故障诊断

基于投票加权GS-KNN的离心风机故障诊断

扫码查看
风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率.k近邻(KNN)对非平稳数据样本有良好的分类能力.为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障诊断模型,利用网格搜索完成k值的选取,基于前k个近邻构建与距离值呈负相关的权值投票公式,依据投票得分情况进行故障诊断.使用投票加权GS-KNN模型对离心风机常见的9种运行状态进行故障诊断,拟合k值与准确率的关系,诊断准确率可达到100%.
Fault diagnosis of centrifugal fans based on voting weighted GS-KNN
As a critical auxiliary component in thermal power generation,the efficient and timely diagnosis of faults in fans can significantly reduce downtime losses and enhance the overall efficiency of thermal power generation.The k-nearest neighbors(KNN)algorithm demonstrates strong classification capabilities for non-stationary data samples.To address the limitations of traditional KNN algorithms,this study proposes a vote weighted grid search k-nearest neighbors algorithm(vote weighted GS-KNN)for fault diagnosis.The algorithm utilizes grid search to select the optimal k value,establishes a weighted voting formula based on the negative correlation between distance values and the proximity of the top k neighbors,and performs fault diagnosis according to the voting scores.The vote weighted GS-KNN model is applied to diagnose nine common operational states of centrifugal fans,and the relationship between the fitted k values and diagnostic accuracy is explored.The diagnostic accuracy of the proposed model reaches 100%.

fault diagnosisthermal power generationgrid searchk-nearest neighbor algorithmvote weighting

曾学文、陈高超、付名江、邵峰、伍仁杰

展开 >

国家能源集团江西分公司,江西 南昌 330006

国能黄金埠发电有限公司,江西 上饶 334000

国能南京电力试验研究有限公司,江苏 南京 210000

故障诊断 火力发电 网格搜索 k近邻算法 投票加权

2024

节能
辽宁省科学技术情报研究所 辽宁省能源研究会

节能

影响因子:0.295
ISSN:1004-7948
年,卷(期):2024.43(1)
  • 14