节能2024,Vol.43Issue(1) :47-50.DOI:10.3969/j.issn.1004-7948.2024.01.014

基于投票加权GS-KNN的离心风机故障诊断

Fault diagnosis of centrifugal fans based on voting weighted GS-KNN

曾学文 陈高超 付名江 邵峰 伍仁杰
节能2024,Vol.43Issue(1) :47-50.DOI:10.3969/j.issn.1004-7948.2024.01.014

基于投票加权GS-KNN的离心风机故障诊断

Fault diagnosis of centrifugal fans based on voting weighted GS-KNN

曾学文 1陈高超 2付名江 2邵峰 3伍仁杰3
扫码查看

作者信息

  • 1. 国家能源集团江西分公司,江西 南昌 330006
  • 2. 国能黄金埠发电有限公司,江西 上饶 334000
  • 3. 国能南京电力试验研究有限公司,江苏 南京 210000
  • 折叠

摘要

风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率.k近邻(KNN)对非平稳数据样本有良好的分类能力.为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障诊断模型,利用网格搜索完成k值的选取,基于前k个近邻构建与距离值呈负相关的权值投票公式,依据投票得分情况进行故障诊断.使用投票加权GS-KNN模型对离心风机常见的9种运行状态进行故障诊断,拟合k值与准确率的关系,诊断准确率可达到100%.

Abstract

As a critical auxiliary component in thermal power generation,the efficient and timely diagnosis of faults in fans can significantly reduce downtime losses and enhance the overall efficiency of thermal power generation.The k-nearest neighbors(KNN)algorithm demonstrates strong classification capabilities for non-stationary data samples.To address the limitations of traditional KNN algorithms,this study proposes a vote weighted grid search k-nearest neighbors algorithm(vote weighted GS-KNN)for fault diagnosis.The algorithm utilizes grid search to select the optimal k value,establishes a weighted voting formula based on the negative correlation between distance values and the proximity of the top k neighbors,and performs fault diagnosis according to the voting scores.The vote weighted GS-KNN model is applied to diagnose nine common operational states of centrifugal fans,and the relationship between the fitted k values and diagnostic accuracy is explored.The diagnostic accuracy of the proposed model reaches 100%.

关键词

故障诊断/火力发电/网格搜索/k近邻算法/投票加权

Key words

fault diagnosis/thermal power generation/grid search/k-nearest neighbor algorithm/vote weighting

引用本文复制引用

出版年

2024
节能
辽宁省科学技术情报研究所 辽宁省能源研究会

节能

影响因子:0.295
ISSN:1004-7948
参考文献量14
段落导航相关论文