首页|西部地区工业碳排放时空特征及达峰分析

西部地区工业碳排放时空特征及达峰分析

扫码查看
以西部地区工业行业为研究对象,对碳排放测算方法进行优化,在合理量化西部地区工业碳排放的基础上,分析西部地区工业碳排放的时空特征;构建BP神经网络模型预测西部地区工业碳排放,从碳排放总量和强度两个角度探究其达峰情况.结果显示:西部地区工业碳排放量在2000~2019年总体呈上升趋势,具有"中低、外高"的空间分布特征;西部地区中四川、贵州、云南、甘肃、新疆地区可能在2030年前实现达峰,内蒙古、青海、陕西、广西、宁夏、重庆地区的达峰时间可能晚于2030年;碳排放强度下降目标方面,预测西部地区中仅内蒙古、新疆、青海地区不能完成碳排放强度下降目标.
Spatial-temporal characteristics and peak analysis of industrial carbon emissions in the western region
Taking the industrial industry in the western region as the research object,this paper optimizes the carbon emission measurement method,analyzes the spatiotemporal characteristics of industrial carbon emissions in the western region on the basis of reasonable quantification of industrial carbon emissions in the western region,constructs a BP neural network model to predict the industrial carbon emissions in the western region,and explores its peak from the perspectives of total carbon emissions and intensity.The results show that the industrial carbon emissions in the western region generally show an upward trend in 2000~2019,with the spatial distribution characteristics of'medium low and high outside'.Sichuan,Guizhou,Yunnan,Gansu and Xinjiang in the western region may reach peak before 2030,and Inner Mongolia,Qinghai,Shaanxi,Guangxi,Ningxia and Chongqing may reach the peak later than 2030.In terms of carbon emission intensity reduction targets,it is predicted that only Inner Mongolia,Xinjiang and Qinghai regions in the western region will not be able to complete the carbon emission intensity reduction targets.

western regioncarbon emissionsemission factor methodBP neural networkspatiotemporal characteristicscarbon peaking

李佳佳、邹艳、王淑平

展开 >

重庆师范大学经济与管理学院,重庆 401331

西部地区 碳排放 排放因子法 BP神经网络 时空特征 碳达峰

重庆市技术预见与制度创新项目

cstc2021jsyjzzysbAX0045

2024

节能
辽宁省科学技术情报研究所 辽宁省能源研究会

节能

影响因子:0.295
ISSN:1004-7948
年,卷(期):2024.43(4)
  • 10