首页|基于STIRPAT扩展模型的辽宁省能源碳排放影响因素研究

基于STIRPAT扩展模型的辽宁省能源碳排放影响因素研究

扫码查看
研究某地区人类活动对碳排放的影响并制定相应的碳减排政策.基于相关统计数据,使用IPCC法估算辽宁省2000~2022年能源碳排放量;选取总人口数、人均GDP、能源强度、城镇化率、煤炭消费量占比和第二产业占比6个变量建立STIRPAT扩展模型,并对STIRPAT扩展模型进行多重共线性检验和岭回归分析.结果表明,除煤炭消费量占比和能源强度对能源碳排放量的增加产生负向影响外,其他因素均对能源碳排放量的增加产生正向影响,如控制人口规模、保持经济平稳健康发展、加速优化能源结构和提高能源效率等,进而控制辽宁省能源碳排放量.本研究对实现碳减排目标具有重要的意义.
Research on the influencing factors of energy carbon emissions in Liaoning province based on the extended stirpat model
Investigate the impact of human activities on carbon emissions in a specific region and formulate corresponding carbon reduction policies..Based on relevant statistical data,the IPCC method is used to estimate the energy carbon emissions in Liaoning Province from 2000 to 2022.Six variables including total population,per capita GDP,energy intensity,urbanization rate,the proportion of coal consumption,and the proportion of the secondary industry were selected to establish an extended STIRPAT model,and a multicollinearity test and ridge regression analysis were conducted on the extended STIRPAT model.The results show that,except for the proportion of coal consumption and energy intensity which have a negative impact on the increase of energy carbon emissions,other factors all have a positive impact on the increase of energy carbon emissions,such as controlling the population size,maintaining a stable and healthy economic development,accelerating the optimization of the energy structure,and improving energy efficiency so as to control the energy carbon emissions in Liaoning Province.This study holds significant importance for achieving carbon emission reduction targets.

energy carbon emissionsextended stirpat modelridge regression

马景富、丁国华

展开 >

沈阳理工大学自动化与电气工程学院,辽宁 沈阳 110159

能源碳排放 STIRPAT扩展模型 岭回归

2024

节能
辽宁省科学技术情报研究所 辽宁省能源研究会

节能

影响因子:0.295
ISSN:1004-7948
年,卷(期):2024.43(7)
  • 7