首页|工业智能化与全球碳减排

工业智能化与全球碳减排

扫码查看
基于1993-2019年51个国家的平衡面板数据,运用双重固定效应模型、中介效应模型和门槛效应模型,分析了工业智能化对全球碳减排的影响和内在机理。研究发现:工业智能化能够显著推动全球碳减排,经过一系列稳健性检验后该结论依然成立。中介效应回归结果表明,工业智能化可以通过制造业高端化和产业结构升级渠道推动全球碳减排。门槛效应回归结果表明,全球碳减排不仅受工业智能化自身发展水平的动态影响,工业集聚度在其中也发挥着调节作用。进一步研究发现,工业智能化能够更大幅度降低全球富裕国家和富裕群体的人均碳足迹,有助于缓解全球碳排放的不平等。因此,应当推动人工智能技术在工业领域的广泛应用,通过跟踪碳足迹评估政策的实际环境影响,推动工业智能化与碳减排领域的国际合作。
Industrial Intelligence and Global Carbon Reduction
Based on the balanced panel data of 51 countries from 1993 to 2019,this paper uses the models of double fixed effect,inter-mediary effect and threshold effect to analyze the influence and internal mechanism of industrial intelligence on global carbon emission reduction.Research has found that industrial intelligence can significantly drive global carbon reduction,and this conclusion remains valid after a series of rigorous tests.The mediation effect regression results indicate that industrial intelligence can promote global car-bon reduction through channels such as upgrading the manufacturing industry and upgrading the industrial structure.The regression re-sults of the threshold effect indicate that global carbon reduction is not only dynamically influenced by the development level of industrial intelligence itself but also regulated by the industrial agglomeration.Further research has found that industrial intelligence can signifi-cantly reduce the per capita carbon footprint of wealthy countries and populations,helping to alleviate global carbon emission inequality.Therefore,it is necessary to promote the widespread application of artificial intelligence technology in the industrial sector,track the actual environmental impact of carbon footprint assessment policies,and promote international cooperation in the fields of industrial in-telligence and carbon reduction.

Industrial IntelligenceClimate ProblemGlobal Carbon ReductionCarbon FootprintInclusive Development

杨春蕾、佟继英

展开 >

南通大学商学院,江苏南通 226019

唐山学院 电子商务学院,河北唐山 063000

工业智能化 气候问题 全球碳减排 碳足迹 包容性发展

河北省社会科学基金项目

HB19YJ006

2024

经济经纬
河南财经学院

经济经纬

CSTPCDCSSCICHSSCD北大核心
影响因子:1.006
ISSN:1006-1096
年,卷(期):2024.41(1)
  • 37