首页|适用可再生能源不确定特性的合成氨多稳态柔性工艺技术

适用可再生能源不确定特性的合成氨多稳态柔性工艺技术

Multistable-flexible ammonia process adapted to renewable energy

扫码查看
双碳背景下,风光可再生能源发电是能源发展的重要方向,"绿氢"由于其长周期存储和零碳特征,可以有效解决风光电力消纳的难题,有望与电能一同成为未来能源体系的两大支柱.但是由于氢气自身特性和氢脆造成的材料瓶颈,"绿氢"发展遇到制储运多环节安全性与经济性挑战.绿电制氢制氨的"电制绿氨"路径被认为是解决"绿电""绿氢"技术经济困局的重要途径之一.针对风光资源的不确定性,分析了基于合成氨"哈-博"工艺多种解决方案的优劣,提出了多稳态柔性"电制绿氨"工艺模式以解决"源网氢氨"复杂技术特征耦合下的设计、装置和运行问题;研究了多稳态柔性"电制绿氨"工艺的系统性技术架构、整定经济运行负荷与运行周期的最优化方法;开发了电氢氨一体化数字仿真模型,计及电力约束、资源波动、氢氨需求、系统运行效率和可靠性等因素,对全场景、全流程下的"电制绿氨"进行协同优化,形成了 一套面向动态运行的绿电耦合化工的设计方法;研究了催化剂结构性能调优与合成塔内件结构的优化方法,开发了复杂变工况条件的催化剂宏观动力学模型,以及电氢氨一体化协同调度与智能控制技术.多稳态柔性"电制绿氨"工艺实现了合成氨经济运行负荷在30%~110%,负荷调节速率在0.5~1.0%/min,支持日、班,及班内多时域负荷调节要求,30%~110%负荷运行下单位合成氨综合能耗均优于GB 21344-2015《合成氨单位产品能源消耗限额》的标杆值.
Given the imperative shift towards achieving carbon peaking and carbon neutrality objectives,the pivotal role of wind and solar renewable energy generation in energy development becomes evident."Green hydrogen",with its ability for long-term storage and zero-carbon attributes,is anticipated to play a foundational role alongside electricity in the future energy system.This integration is crucial for addressing challenges associated with the incorporation of wind and solar power into the energy matrix.However,the development of"green hydrogen"is facing challenges particularly in terms of safety and economic feasibility throughout various stages of production,stor-age,and transportation.These challenges are primarily attributed to the intrinsic properties of hydrogen and material limitations induced by hydrogen embrittlement.Addressing the economic challenges related to both"green electricity"and"green hydrogen"within the context of dual carbon goals,the approach of"electrically producing green ammonia"is deemed essential.Recent studies have studied multiple solutions based on the well-established"Haber-Bosch"ammonia process to mitigate uncertainties associated with wind and solar re-sources.In this paper,a renewable power to ammonia multistable-flexible process(RePtAmMuFlP)was proposed to tackle the design,equipment,and operational challenges associated with the intricate coupling of"source-grid-hydrogen-ammonia"technical characteris-tics.This research explored the systemic technical architecture of RePtAmMuFlP.In addition,an optimization model was developed to ad-just the economic operating loads and periods,while a digital simulation model was also constructed to integrate renewable power,hydro-gen,and ammonia,considering factors like power constraints,renewable power fluctuations,hydrogen-ammonia demand,system operat-ing efficiency,and equipment reliability.This integrated model facilitates the coordinated optimization of"renewable power to green am-monia"operations in different scenarios,offering a dynamic design approach for industrial systems.Furthermore,the macroscopic kinet-ic models of catalysts under complex operating conditions were investigated,which led to improvements in catalyst structural performance,internal structure of synthesis towers,and the integration of power-hydrogen-ammonia with collaborative scheduling and intelligent control technologies.This RePtAmMuFlP has achieved economic operation loads ranging from 30%to 110%,with a load adjustment rate of 0.5%to 1.0%per minute.It also supports adjustments in daily,shift,and intra-shift loads,with the overall energy consumption per unit of am-monia surpassing the benchmark value set by GB 21344-2015 Energy consumption limit of unit product of ammonia.

renewable powerhydrogen energygreen ammoniamultistable-flexiblehydrogen-ammonia integrationsafety

吉旭、林今、聂李红、周利、袁绍军、张欢、贺革、戴一阳

展开 >

四川大学化学工程学院,四川成都 610065

清华大学电机工程与应用电子技术系,北京 100084

清华四川能源互联网研究院,四川成都 610065

中国成达工程有限公司,四川成都 610095

清云智通(成都)科技有限公司,四川成都 610065

展开 >

可再生能源 氢能 合成氨 多稳态柔性 氢氨一体化 安全性

国家重点研发计划资助项目

2021YFB4000502

2024

洁净煤技术
煤炭科学研究总院 煤炭工业洁净煤工程技术研究中心

洁净煤技术

CSTPCD北大核心
影响因子:0.893
ISSN:1006-6772
年,卷(期):2024.30(2)
  • 36