首页|六元高熵二维材料的光热甲醇重整制氢的研究与应用

六元高熵二维材料的光热甲醇重整制氢的研究与应用

扫码查看
为了提高光热甲醇重整制氢反应中铜基催化剂的稳定性与效率,提出了一种基于高熵策略的催化剂设计方法.通过聚乙烯吡咯烷酮(PVP)辅助冻干法,成功制备了六元高熵二维Cu2Zn1Al0.5Ce5Zr0.5In0.5Ox催化剂.该催化剂通过多种表征手段(包括X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及氮气吸附脱附分析等)验证了其晶体结构的单一性以及表面纳米片状特征,同时显示出优异的抗烧结和抗氧化性能.在热催化反应中,当反应温度达到450 ℃时,氢气生成速率达到1 887.94 mmol/(g·h).在新型光热转换装置的配合下,该催化剂在2 kW/m2强度的太阳光下展现出显著的光热催化活性,其甲醇水蒸气重整产氢速率为1 402.12 mmol/(g·h),且在72 h内保持稳定,表现出卓越的长期稳定性.该催化剂的高性能主要源于其高熵特性带来的热力学稳定性及独特的多孔结构,这些特点显著增加了催化活性位点的数量,同时增强了对高温环境的适应能力.与传统催化剂相比,六元高熵Cu2Zn1Al0.5Ce5Zr0.5In0.5Ox在光热甲醇重整制氢反应中的催化性能和稳定性均得到了显著提升,克服了室外光热系统因温度波动导致的催化剂烧结问题.不仅为光热催化领域提供了一种新型高效催化剂设计策略,还进一步推动了高熵材料在复杂反应条件下的实际应用.通过将高熵材料与光热催化技术相结合,为实现氢能源的可持续高效生产提供了理论支持与实践依据,展现了该催化剂在工业化制氢中的广阔应用前景.
Study and application of six-component high-entropy two-dimensional materials in photothermal methanol reforming for hydrogen production
To enhance the stability and efficiency of copper-based catalysts in photothermal methanol reforming for hydrogen production,this study proposes a catalyst design strategy based on high-entropy principles.A six-component high-entropy two-dimensional Cu2Zn1Al0.5Ce5Zr0.5In0.5Ox catalyst was successfully synthesized using a polyvinylpyrrolidone(PVP)-assisted freeze-drying method.Characterization techniques,including X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and nitrogen adsorption-desorption analysis,confirmed the single-phase crystal structure and nanosheet morphology of the catalyst,along with its superior anti-sintering and anti-oxidation properties.In thermal catalytic reactions,the catalyst exhibited a hydrogen production rate of 1 887.94 mmol/(g·h)at 450 ℃.When integrated with a novel photothermal conversion device,the catalyst demonstrated remarkable photothermal catalytic activity under a solar intensity of 2 kW/m2,achieving a methanol steam reforming hydrogen production rate of 1 402.12 mmol/(g·h)while maintaining stability over 72 hours,indicating exceptional long-term durability.Further experiments revealed that the high performance of this catalyst is primarily attributed to the thermodynamic stability and unique porous structure derived from its high-entropy characteristics.These features significantly increased the number of catalytic active sites and enhanced resistance to high-temperature conditions.Compared to traditional catalysts,the six-component high-entropy Cu2Zn1Al0.5Ce5Zr0.5In0.5OX exhibited significantly improved catalytic performance and stability in photothermal methanol reforming for hydrogen production,addressing the sintering challenges caused by temperature fluctuations in outdoor photothermal systems.This study not only provides a novel and efficient catalyst design strategy for the photothermal catalysis field but also advances the practical application of high-entropy materials under complex reaction conditions.By integrating high-entropy materials with photothermal catalytic technology,this work offers theoretical support and practical solutions for the sustainable and efficient production of hydrogen energy,showcasing the broad industrial application potential of this catalyst in hydrogen production.

PVP-assisted freeze-drying methodhigh-entropy materialsphotothermal catalysis technologymethanol steam reforming for hydrogen productioncatalyst

黄森焱、刘鑫、雷如楠、杜凯、于晨阳、李亚光

展开 >

河北大学光驱动碳中和研究中心,河北保定 071002

PVP辅助冻干法 高熵材料 光热催化技术 甲醇水蒸气重整制氢 催化剂

2024

洁净煤技术
煤炭科学研究总院 煤炭工业洁净煤工程技术研究中心

洁净煤技术

CSTPCD北大核心
影响因子:0.893
ISSN:1006-6772
年,卷(期):2024.30(12)