首页|光热驱动甲烷在Ni@SrTiO3催化剂上高效转化与积碳抑制策略

光热驱动甲烷在Ni@SrTiO3催化剂上高效转化与积碳抑制策略

扫码查看
深入探索了甲烷与二氧化碳在光热异质催化剂体系中的高效反应特性,旨在为甲烷干重整反应提供一种更具潜力的催化解决方案.为达成此目标,选取了 Ni@CaAlxOy、Ni@SrTiO3和Ni@Sr0.5Ba0.5TiO3三种催化剂,并在400~800 ℃的宽泛温度范围内对其性能进行了全面评估.实验结果显示,Ni@SrTiO3催化剂展现出了最高的稳定性和催化活性,尤其在800 ℃时,其甲烷转化率峰值高达89.12%,显著优于其他2种催化剂.这一表现不仅表现了 Ni@SrTiO3在甲烷干重整反应中的应用潜力,也凸显了光热驱动技术在提升催化性能方面的显著优势.本研究还综合运用了氢气程序升温还原(H2-TPR)、二氧化碳程序升温脱附(CO2-TPD)及电子顺磁共振(EPR)等先进表征技术,深入揭示了 Ni@SrTiO3催化剂良好性能的内在机制.通过上述表征技术发现,Ni@SrTiO3的优异性能主要源于其独特的表面缺陷结构、丰富的碱性中心以及高浓度的氧空位.这些特性不仅促进了反应物的吸附和活化,还优化了氧迁移机制,从而提升了催化效率.此外,Ni@SrTiO3还表现出了强大的抗积碳性能,这得益于其优化的三元催化界面,有效抑制了甲烷干重整副反应,进一步保障了催化剂的稳定性和耐用性.这些发现不仅为甲烷干重整反应提供了一种更具潜力的催化解决方案,也为催化剂的设计和优化提供了重要的理论指导和实践依据.未来研究将进一步优化Ni@SrTiO3催化剂的组成和结构,以期实现更高效、更可持续的甲烷转化与氢气制备过程.
Efficient conversion and carbon deposition inhibit strategy of photothermal-driven methane reforming on Ni@SrTiO3 catalyst
This study delves into the exploration of efficient reaction characteristics of methane and carbon dioxide in a photothermal heterogeneous catalyst system,aiming to provide a more promising catalytic solution for methane dry reforming.To achieve this objective,three catalysts:Ni@CaAlxOy,Ni@SrTiO3,and Ni@Sr0.5Ba0.5TiO3 were selected and comprehensively evaluated for their performance within a broad temperature range of 400-800 ℃.The experimental results demonstrated that the Ni@SrTiO3 catalyst exhibited the highest stability and catalytic activity,particularly at 800 ℃,where its methane conversion peaked at 89.12%,significantly outperforming the other two catalysts.This performance not only underscores the potential application of Ni@SrTiO3 in methane dry reforming but also highlights the significant advantages of photothermal drive technology in enhancing catalytic performance.Furthermore,this study employed advanced characterization techniques,including hydrogen temperature-programmed reduction(H2-TPR),carbon dioxide temperature-programmed desorption(CO2-TPD),and electron paramagnetic resonance(EPR),to delve into the underlying mechanisms of Ni@SrTiO3's superior performance.Through these characterization techniques,it was found that Ni@SrTiO3's exceptional performance is primarily attributed to its unique surface defect structure,abundant alkaline centers,and high concentrations of oxygen vacancies.These characteristics not only facilitate the adsorption and activation of reactants but also optimize the oxygen migration mechanism,thereby enhancing catalytic efficiency.Additionally,Ni@SrTiO3 demonstrated robust anti-coking performance,benefiting from its optimized ternary catalytic interface,which effectively inhibits side reactions in methane dry reforming,further ensuring the stability and durability of the catalyst.These findings not only provide a more promising catalytic solution for methane dry reforming but also offer important theoretical guidance and practical basis for the design and optimization of catalysts.Future research will further optimize the composition and structure of the Ni@SrTiO3 catalyst to achieve more efficient and sustainable methane conversion and hydrogen production processes.

photothermal couplingmethane reformingcarbon depositionoxygen transport mechanismcatalytic activity

马旭、杨卫卫

展开 >

西安交通大学能源与动力工程学院,陕西西安 710049

光热耦合 甲烷重整 积碳 氧传输机制 催化活性

2024

洁净煤技术
煤炭科学研究总院 煤炭工业洁净煤工程技术研究中心

洁净煤技术

CSTPCD北大核心
影响因子:0.893
ISSN:1006-6772
年,卷(期):2024.30(12)