首页|太阳能驱动甲烷化学链重整制氢与甲醇合成的储能系统模拟

太阳能驱动甲烷化学链重整制氢与甲醇合成的储能系统模拟

Simulation analysis of an energy storage system for solar-driven chemical looping reforming of methane to produce hydrogen and methanol

扫码查看
为了实现氢能的安全储存与运输,将氢气转化为液态甲醇成为氢气存储的重要方式.氢气与一氧化碳(CO)通过费托合成制取甲醇由于其优异性能而被广泛应用.传统制取氢气与CO的方法主要是甲烷湿重整和甲烷干重整,然而该方法需在高温(≥850℃)下进行,且能量消耗较大,通常依赖甲烷燃烧放热以满足反应条件.提出了一种太阳能驱动甲烷化学链重整制氢与甲醇合成的储能系统,选用氧化镍作为载氧体,反应温度可降至600 ℃,系统以太阳热能为驱动力,避免了燃烧甲烷,降低了能耗并减少了环境负担.同时,依据"温度对口、梯级利用"原则将甲烷化学链重整产生的高温烟气与燃气蒸汽联合循环耦合进行发电.能量、(火用)和灵敏度分析结果表明:燃料反应器与空气反应器温度分别为600 ℃和1 200 ℃、氧化镍与甲烷物质的量比为0.8、水与甲烷物质的量比为1.9时,系统的能量利用效率为62.82%,(火用)效率为64.75%,甲醇产率可达69.73%.在此条件下,甲烷转化率为80.58%,相比传统甲烷重整法降低了 250 ℃,且甲烷转化率显著提高.
To achieve safe storage and transportation of hydrogen energy,converting hydrogen gas into liquid methanol has become an important method for hydrogen storage.Hydrogen and carbon monoxide(CO)are used to produce methanol via the Fischer-Tropsch synthesis,which is widely applied due to its excellent performance.Traditional methods of producing hydrogen and CO mainly involve methane steam reforming and dry reforming of methane.However,these methods require high temperatures(≥850 ℃)and have high energy consumption,often relying on the combustion of methane to provide heat for the reaction.This paper proposes a solar-driven chemical looping reforming system for hydrogen production and methanol synthesis,using nickel oxide as the oxygen carrier.The reaction temperature can be reduced to 600 ℃,and the system is powered by solar thermal energy,avoiding methane combustion,reducing energy consumption,and lowering environmental impact.Additionally,following the principle of"temperature matching and cascading utilization",the high-temperature flue gas and gas steam generated by methane chemical looping reforming are coupled in a combined cycle for power generation.Energy,efficiency,and sensitivity analysis results show that when the fuel reactor and air reactor temperatures are 600 ℃ and 1 200 ℃,respectively,the molar ratio of nickel oxide to methane is 0.8,and the molar ratio of water to methane is 1.9,the system achieves an energy utilization efficiency of 62.82%,an efficiency of 64.75%,and a methanol yield of 69.73%.Under these conditions,the methane conversion rate is 80.58%,which is 250 ℃ lower than traditional methane reforming methods,while significantly improving the methane conversion rate.

chemical looping reformingmethanol productionsolar thermal energy storagesensitivity analysisenergy and exergy analysis

王艳娟、龙云飞、辛宇、蒋琼琼、徐超、曲万军、洪慧

展开 >

华北电力大学能源动力与机械工程学院,北京 102206

中国科学院工程热物理研究所,北京 100190

东莞理工学院化学工程与能源技术学院广东省分布式能源系统重点实验室,广东东莞 523808

化学链重整制氢 甲醇合成 太阳能热存储 灵敏度分析 能量和(火用)分析

2024

洁净煤技术
煤炭科学研究总院 煤炭工业洁净煤工程技术研究中心

洁净煤技术

CSTPCD北大核心
影响因子:0.893
ISSN:1006-6772
年,卷(期):2024.30(12)