首页|区域碳排放竞合关系:网络特征与影响因素分析

区域碳排放竞合关系:网络特征与影响因素分析

扫码查看
研究城市群碳排放空间关联网络结构有助于突破传统的地域治理模式,跨越行政区域管理限制,从而实现区域间的协同合作,共同推动碳排放的减少.因此,本文选择2011~2021 年中国三大城市群——京津冀、长三角和珠三角为研究对象,利用改进的引力模型分别计算各城市群的碳排放空间关联网络;同时进一步利用社会网络分析方法和QAP方法研究了各城市群的碳排放空间关联网络结构特征、驱动因素和长期预测分析.研究结果表明:(1)京津冀城市群和长三角城市群城市之间碳排放关系强度较大以及网络密度较高的城市主要存在于核心城市,同时城市间关系强度差异较大.而珠三角城市群城市间碳排放关系强度以及网络密度相对来说比较均匀.(2)在京津冀和长三角城市群中,北京、天津、唐山、杭州、苏州和无锡在网络中扮演核心桥梁角色,而在珠三角城市群中,并不存在明显的中心城市.(3)地理因素、经济因素、城镇化水平、人口密度、产业结构和能源强度等因素都对碳排放网络产生影响,然而在不同的城市群中,这些因素的作用表现出差异性.此外,本文构建了系统动力学模型,以预测不同情境下,各因素对碳排放的影响程度.本文最后给出了一些建议,如制定有效的跨区域碳减排合作机制、制定统一的减排目标及构建统一的市场机制等.上述分析对于深化地区间合作、制定碳排放政策以及实现碳减排目标具有重要意义.
Competition and Cooperation in Regional Carbon Emissions:Analysis of Network Characteristics and Influencing Factors
Researching on the spatial correlation network structure of carbon emissions in ur-ban agglomerations is helpful to break through the traditional regional governance model and transcend administrative regional management restrictions,so as to realize inter-regional cooper-ation and jointly promote the reduction of carbon emissions.Therefore,this paper selects three major urban agglomerations in China from 2011-2021,which are Beijing-Tianjin-Hebei re-gion,Yangtze River Delta and Pearl River Delta,and uses an improved gravity model to calcu-late the spatial correlation network of carbon emissions of each urban agglomeration.Social net-work analysis method and QAP method are used to study the spatial correlation network structure characteristics,driving factors and long-term prediction analysis of carbon emissions in urban agglomerations.The results show that:(1)The cities with high carbon emission intensity and high network density between Beijing-Tianjin-Hebei urban agglomeration and Yangtze River Del-ta urban agglomeration mainly exist in the core cities,and the relationship intensity between the cities is greatly different.The intensity of carbon emission relationship and network density in Pearl River Delta urban agglomeration are relatively uniform.(2)In Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations,Beijing,Tianjin,Tangshan,Hangzhou,Suzhou and Wuxi play the role of core bridges in the network,while in Pearl River Delta urban agglomera-tion,there is no obvious central city.(3)Geographical factors,economic factors,urbanization level,population density,industrial structure,energy intensity and other factors have an impact on carbon emission network,but in different urban agglomerations,the effects of these factors are different.And the system dynamics model is constructed to predict the influence degree of each factor on carbon emission under different scenarios.At the end,some suggestions are giv-en,such as the development of effective cross-regional carbon emission reduction cooperation mechanism,the development of a unified emission reduction target and the construction of a uni-fied market mechanism.The study of urban agglomeration spatial correlation network and its in-fluencing factors is of great significance for deepening regional cooperation,formulating carbon emission policies and achieving carbon emission reduction targets.

carbon emissionurban agglomerationspatial correlation networkssocial net-work analysis(SNA)QAP

李创、赵琴、王丽萍

展开 >

集美大学工商管理学院

河南理工大学

集美大学财经学院

碳排放 城市群 空间关联网络 社会网络分析 QAP

2024

经济研究参考
经济科学出版社

经济研究参考

CHSSCD
影响因子:0.53
ISSN:2095-3151
年,卷(期):2024.(11)