首页|基于"物理模型+数据驱动"神经网络的纤维过滤效率预测研究

基于"物理模型+数据驱动"神经网络的纤维过滤效率预测研究

扫码查看
大数据和人工智能的飞速发展为复杂工程问题的研究提供了一种全新的探索范式.粉尘颗粒在纤维过滤器中清除过程是一个复杂的非线性动力学过程,难以考虑多因素非线性耦合作用给出准确的纤维过滤效率预测模型,采用物理模型+数据驱动的人工神经网络技术构建纤维过滤效率预测模型.在简化纤维过滤模型基础上,采用Lagrangian颗粒动力学方法求解颗粒运动规律,获得在拦截和扩散耦合作用下的纤维过滤效率;以Pe数、拦截参数R和纤维填充率C作为因变量建立纤维过滤效率数据库,以此作为神经网络模型学习训练数据样本.结果表明,神经网络模型可以在合理的计算时间内进行训练,并且能够准确估计纤维过滤效率.
Research on the Prediction of Fiber Filtration Efficiency Based on"Physical Model+Data"Driven Neural Network
The rapid advancement of big data and artificial intelligence has opened up new avenues for exploring complex engineering problems.The process of dust particle removal in fiber filters is a highly intricate nonlinear kinetic process,making it challenging to develop an accurate prediction model for fiber filtration efficiency that takes into account the multifactorial nonlinear coupling.In this study,an artificial neural network driven by both physical models and data was employed to construct a predictive model for fiber filtration efficiency.Based on a simplified fiber filtration model,the Lagrangian particle dynamics methodwas employed to solve particle movement with consideration of the capture mechanismsof interception and diffusion.A database of fiber filtration efficiency was established with dependent variables including Pe number,interception parameter R,and fiber filling rate C.This database serves as training data samples for the neural network model,and the results show that the neural network model can be trained within a reasonable calculation time frame while accurately estimating fiber filtration efficiency.

Air filtrationParticle captureNumerical simulationNeural network

刘烈亮、谭百万、时运强、朱辉

展开 >

东莞拓斯达智能环境技术有限公司绿能事业部

桂林电子科技大学建筑与交通工程学院

空气过滤 颗粒捕集 数值模拟 神经网络

2024

洁净与空调技术
中国电子工程设计院 中国电子学会洁净技术分会

洁净与空调技术

影响因子:0.264
ISSN:1005-3298
年,卷(期):2024.(4)