首页|基于主成分分析和长短期记忆神经网络的光伏功率区间预测

基于主成分分析和长短期记忆神经网络的光伏功率区间预测

PV Power Range Prediction Based on Principal Component Analysis and Long Short-term Memory Neural Network

扫码查看
针对光伏发电功率的随机变化,提出一种基于主成分分析和长短期记忆神经网络的光伏功率区间预测方法,有效实现了光伏功率的区间预测.首先,将用于训练模型的输入数据进行主成分分析法降维,在提取数据特征的同时降低数据维度;然后,将降维后的数据与真实光伏功率一同输入基于分位数的长短期记忆神经网络预测模型中迭代训练,得到训练完毕的预测模型;最后,在对比仿真中验证了所提方法的有效性.
Aiming at the random change of photovoltaic power generation,this paper proposed a photovoltaic power interval prediction method based on principal component analysis and long short-term memory neural network,which effectively realized the interval prediction of photovoltaic power.Firstly,reduce the dimensions of the input data used for the training model by principal component analysis,which reduce the data dimensions while extracting data features.Then,input the reduced dimension data and the real photovoltaic power into the quantile based long short-term memory neural network prediction model for iterative training to obtain the trained prediction model.Finally,the effectiveness of the proposed method is verified in the comparative simulation.

long short-term memory neural networkquantile regressioninterval predictionprincipal component analysis

孙玮澳、王文超、张震、吴昊、朱勇男

展开 >

国网长春供电公司,长春 130012

国网四平城郊供电公司,吉林 四平 136000

长短期记忆神经网络 分位数回归 区间预测 主成分分析

2024

吉林电力
吉林省电机工程学会,吉林省电力有限公司电力科学研究院

吉林电力

影响因子:0.338
ISSN:1009-5306
年,卷(期):2024.52(1)
  • 13