首页|基于改进粒子群算法的分散式电采暖负荷模型参数辨识

基于改进粒子群算法的分散式电采暖负荷模型参数辨识

Parameter Identification of Distributed Electric Heating Load Model Based on Improved Particle Swarm Optimization

扫码查看
分散式电采暖负荷是一种具有巨大调节潜力的需求响应资源,但是,用户行为差异、太阳辐照度等随机因素为建立精确的分散式电采暖负荷模型增加了一定难度.首先,结合具体应用场景,搭建基于气候模拟平台的分散式电采暖负荷实验平台,采集负荷建模实验数据.然后,针对分散式电采暖负荷二阶等效热参数模型方程较为复杂的问题,以仿真温度与实测温度之间的误差最小为目标,提出基于改进粒子群算法的模型参数辨识方法,建立分散式电采暖负荷模型.最后,通过改变数据采样周期,对负荷模型进行优化.结果表明,所提参数辨识及建模优化方法可以有效地提高分散式电采暖负荷二阶等效热参数模型精度.
The distributed electric heating load is a demand response resource with great adjustment potential.However,user behavior differences,solar irradiance and other random factors increase the difficulty of establishing accurate distributed electric heating load model.Firstly,combined with specific application scenarios,a distributed electric heating load experimental platform based on climate simulation platform is built to collect the experimental data required for load modeling.Then,aiming at the complex problem of the second-order equivalent thermal parameter model equation of the distributed electric heating load,the model parameter identification method based on the improved particle swarm optimization algorithm is proposed to minimize the error between the simulation temperature and the measured temperature,and the distributed electric heating load model is established.Finally,the load model is optimized by changing the data sampling period.The results show that the proposed parameter identification and modeling optimization method can effectively improve the accuracy of the second-order equivalent thermal parameter model of distributed electric heating load.

climate simulation platformdistributed electric heating loadequivalent thermal parameter modelimproved particle swarm optimization algorithmparameter identification

张利伟、王思言、穆钢、张格琳、孙伟、杨玉龙

展开 >

东北电力大学,吉林 吉林 132012

国网运城供电公司,山西 运城 044000

气候模拟平台 分散式电采暖负荷 等效热参数模型 改进粒子群优化算法 参数辨识

新疆自治区2022年重大科技专项项目

2022A01007-5

2024

吉林电力
吉林省电机工程学会,吉林省电力有限公司电力科学研究院

吉林电力

影响因子:0.338
ISSN:1009-5306
年,卷(期):2024.52(1)
  • 22