吉林大学学报(理学版)2025,Vol.63Issue(1) :9-14.DOI:10.13413/j.cnki.jdxblxb.2024467

超线性阻尼项和Kirchhoff项对解衰减速率的影响

Effect of Superlinear Damping Term and Kirchhoff Term to Decay Rate of Solutions

李仲庆 郭斌 高文杰
吉林大学学报(理学版)2025,Vol.63Issue(1) :9-14.DOI:10.13413/j.cnki.jdxblxb.2024467

超线性阻尼项和Kirchhoff项对解衰减速率的影响

Effect of Superlinear Damping Term and Kirchhoff Term to Decay Rate of Solutions

李仲庆 1郭斌 2高文杰2
扫码查看

作者信息

  • 1. 贵州财经大学数学与统计学院,贵阳 550025
  • 2. 吉林大学数学学院,长春 130012
  • 折叠

摘要

考虑一类具Kirchhoff项的非局部波动方程解的衰减速率.首先,通过对解Sobolev范数建立加权估计,克服超临界阻尼项带来经典乘子法失效的困难.其次,利用加权乘子法证明当阻尼项为超临界阻尼时,所研究问题能量泛函为对数衰减,完全不同于线性阻尼的指数衰减和次临界阻尼的多项式衰减.

Abstract

We considered the decay rate of solutions to a class of nonlocal wave equations with Kirchhoff term.Firstly,by establishing weighted estimates of the Sobolev norm,the difficulty of classical multiplier method failure caused by supercritical damping term could be overcome.Secondly,by using the weighted multiplier method to prove that the energy functional of the studied problem decayed logarithmically when the damping term was supercritical damping,which was totally different from both exponential decay of linear damping and polynomial decay of subcritical damping.

关键词

非局部方程/加权乘子法/衰减估计

Key words

nonlocal equation/weighted multiplier method/decay estimate

引用本文复制引用

出版年

2025
吉林大学学报(理学版)
吉林大学

吉林大学学报(理学版)

北大核心
影响因子:0.46
ISSN:1671-5489
段落导航相关论文