首页|由分数Brown运动驱动的EGARCH模型

由分数Brown运动驱动的EGARCH模型

扫码查看
针对传统EGARCH模型难以捕捉长记忆性的问题,通过引入分数Brown运动提出一个fBm-EGARCH模型,给出模型的二阶矩、四阶矩及协方差函数性质,并理论证明其长期记忆性。数值模拟结果表明,该模型不仅能准确捕捉短期波动,还能反映长期记忆性,从而验证了模型的有效性。
EG ARCH Model Driven by Fractional Brownian Motion
Aiming at the problem that the traditional EGARCH model was difficult to capture long-term memory,we proposed an fBm-EGARCH model by introducing fractional Brownian motion.We gave the second-order moment,the fourth-order moment and covariance function properties of the model,and theoretically proved its long-term memory.Numerical simulation results show that the model can not only accurately capture short-term fluctuations,but also reflect long-term memory,which verifies the effectiveness of the model.

EGARCH modelfractional Brownian motionlong-term memoryliquidity

王玮莹、韩月才

展开 >

吉林大学数学学院,长春 130012

EGARCH模型 分数Brown运动 长期记忆性 流动性

2025

吉林大学学报(理学版)
吉林大学

吉林大学学报(理学版)

北大核心
影响因子:0.46
ISSN:1671-5489
年,卷(期):2025.63(1)