吉林大学学报(理学版)2025,Vol.63Issue(1) :67-75.DOI:10.13413/j.cnki.jdxblxb.2023400

利用地理空间和时间信息GNN-Transformer在MJO预测中的应用

Harnessing Geospatial and Temporal Information:GNN-Transformer Application to MJO Prediction

魏晓辉 徐哲文 王兴旺 郝介云 刘长征
吉林大学学报(理学版)2025,Vol.63Issue(1) :67-75.DOI:10.13413/j.cnki.jdxblxb.2023400

利用地理空间和时间信息GNN-Transformer在MJO预测中的应用

Harnessing Geospatial and Temporal Information:GNN-Transformer Application to MJO Prediction

魏晓辉 1徐哲文 1王兴旺 1郝介云 1刘长征2
扫码查看

作者信息

  • 1. 吉林大学计算机科学与技术学院,长春 130012
  • 2. 国家气候中心气候研究开放实验室,北京 100081
  • 折叠

摘要

针对目前深度学习在极端天气现象Madden-Julian振荡(MJO)预测任务中表现欠佳的问题,提出一种基于动态图神经网络与Transformer结合的时序预测模型.首先,将地球海陆二维网格映射到图结构的节点上,并提出利用多重注意力混合海陆掩码的方法进行节点筛选;其次,使用基于热传导与节点相似度度量进行边权重的迭代更新,以获取每个时间步中最准确的气候模式信息;再次,使用最大极值法抽取不同时间段的异常节点信息作为极端气候的发生点,并对这类点的变权重进行强化;最后,将上述结果输入到图神经网络进行编码,并使用Transformer进行解码操作获取预测结果.实验结果表明,该模型在预测中最高可获得39 d的双变量相关系数(COR)有效预测值,以及31 d的均方根误差(RMSE)有效预测值,性能优于现有模型.

Abstract

Aiming at the problem of poor performance exhibited by current deep learning in extreme weather phenomenon Madden-Julian oscillation(MJO)prediction tasks,we proposed a time series prediction model based on a combination of dynamic graph neural network and Transformer.Firstly,we mapped the two-dimensional grid of Earth's land and sea to the nodes of graph structure,and proposed a method of using multi-attention hybrid sea and land masks for node screening.Secondly,we iteratively updated edge weights based on heat conduction and node similarity measurement to obtain the most accurate climate model information at each time step.Thirdly,we used the maximum extreme value method to extract abnormal node information during different time periods as occurrence points of extreme climate,and strengthened variable weights of these points.Finally,we input above results into a graph neural network for encoding and utilized Transformer for decoding operations to obtain prediction results.Experimental results show that the model can achieve an effective bivariate correlation coefficient(COR)prediction value of up to 39 d as well as an effective root mean square error(RMSE)prediction value of 31 d in prediction,and its performance is superior to existing models.

关键词

时空预测/图神经网络/天气预测/时间序列预测

Key words

spatio-temporal forecasting/graph neural network/weather forcasting/time series prediction

引用本文复制引用

出版年

2025
吉林大学学报(理学版)
吉林大学

吉林大学学报(理学版)

北大核心
影响因子:0.46
ISSN:1671-5489
段落导航相关论文