吉林大学学报(理学版)2025,Vol.63Issue(1) :76-82.DOI:10.13413/j.cnki.jdxblxb.2024047

基于知识图谱中路径推理的多轮对话模型

Multi Round Conversational Model Based on Path Reasoning in Knowledge Graph

化青远 彭涛 崔海 毕海嘉
吉林大学学报(理学版)2025,Vol.63Issue(1) :76-82.DOI:10.13413/j.cnki.jdxblxb.2024047

基于知识图谱中路径推理的多轮对话模型

Multi Round Conversational Model Based on Path Reasoning in Knowledge Graph

化青远 1彭涛 2崔海 1毕海嘉1
扫码查看

作者信息

  • 1. 吉林大学计算机科学与技术学院,长春 130012
  • 2. 吉林大学计算机科学与技术学院,长春 130012;吉林大学符号计算与知识工程教育部重点实验室,长春 130012
  • 折叠

摘要

基于图编码器的路径推理方法,将知识图谱多轮对话的实体间关系作为节点图,编码器根据每轮对话对节点逐次编码从而模拟语义推理过程,最终预测当前对话的答案实体,解决了对话中存在缺省词和指代词的问题以及复杂语境下的特征提取问题.实验结果表明,该方法更关注实体间的关系,有助于保持推理的完整性和准确性,在一定程度上证明了将上下文建模为关系节点图的实用性和有效性.

Abstract

Based on a path reasoning method of graph encoder,we used the entity relationships between multi rounds of dialogue in the knowledge graph as a node graph.The encoder sequentially encoded the nodes according to each round of dialogue to simulate the semantic reasoning process,and utimately predicted the answer entity for the current dialogue.This approach solved the problems of missing words and pronouns in dialogues,as well as feature extraction problems in complex contexts.The experimental results show that the method focused more on the relationships between entities,which helped to maintain the integrity and accuracy of reasoning.To a certain extent,it proved the practicality and effectiveness of modeling context as a relational node graph.

关键词

知识图谱/自然语言处理/多轮问答/卷积神经网络

Key words

knowledge graph/natural language process/multi round of question answering/convolutional neural network

引用本文复制引用

出版年

2025
吉林大学学报(理学版)
吉林大学

吉林大学学报(理学版)

北大核心
影响因子:0.46
ISSN:1671-5489
段落导航相关论文