首页|基于知识图谱中路径推理的多轮对话模型

基于知识图谱中路径推理的多轮对话模型

扫码查看
基于图编码器的路径推理方法,将知识图谱多轮对话的实体间关系作为节点图,编码器根据每轮对话对节点逐次编码从而模拟语义推理过程,最终预测当前对话的答案实体,解决了对话中存在缺省词和指代词的问题以及复杂语境下的特征提取问题。实验结果表明,该方法更关注实体间的关系,有助于保持推理的完整性和准确性,在一定程度上证明了将上下文建模为关系节点图的实用性和有效性。
Multi Round Conversational Model Based on Path Reasoning in Knowledge Graph
Based on a path reasoning method of graph encoder,we used the entity relationships between multi rounds of dialogue in the knowledge graph as a node graph.The encoder sequentially encoded the nodes according to each round of dialogue to simulate the semantic reasoning process,and utimately predicted the answer entity for the current dialogue.This approach solved the problems of missing words and pronouns in dialogues,as well as feature extraction problems in complex contexts.The experimental results show that the method focused more on the relationships between entities,which helped to maintain the integrity and accuracy of reasoning.To a certain extent,it proved the practicality and effectiveness of modeling context as a relational node graph.

knowledge graphnatural language processmulti round of question answeringconvolutional neural network

化青远、彭涛、崔海、毕海嘉

展开 >

吉林大学计算机科学与技术学院,长春 130012

吉林大学符号计算与知识工程教育部重点实验室,长春 130012

知识图谱 自然语言处理 多轮问答 卷积神经网络

2025

吉林大学学报(理学版)
吉林大学

吉林大学学报(理学版)

北大核心
影响因子:0.46
ISSN:1671-5489
年,卷(期):2025.63(1)