吉林大学学报(理学版)2025,Vol.63Issue(1) :83-90.DOI:10.13413/j.cnki.jdxblxb.2024008

本体指导下的安全强化学习最优化策略

Optimization Strategy for Safety Reinforcement Learning Guided by Ontology

郝嘉宁 姚永伟 叶育鑫
吉林大学学报(理学版)2025,Vol.63Issue(1) :83-90.DOI:10.13413/j.cnki.jdxblxb.2024008

本体指导下的安全强化学习最优化策略

Optimization Strategy for Safety Reinforcement Learning Guided by Ontology

郝嘉宁 1姚永伟 2叶育鑫3
扫码查看

作者信息

  • 1. 吉林大学计算机科学与技术学院,长春 130012;浪潮通用软件有限公司,济南 250101
  • 2. 中国人民解放军63611部队,新疆库尔勒 841000
  • 3. 吉林大学计算机科学与技术学院,长春 130012;吉林大学符号计算与知识工程教育部重点实验室,长春 130012
  • 折叠

摘要

针对安全强化学习实现过程中,基于屏蔽的实现方式可能受制于没有合适的备用策略可供使用,导致判断出危险也不能阻止系统离开安全状态,结合知识的实现方式虽然能通过提取概念特征,用结构化的知识对指定状态给予安全指导,但有时知识蕴含的指导可能并不是最优的策略,甚至可能不如智能体探索习得策略的问题,提出一个本体指导下的安全强化学习最优化策略,实现风险识别规避、动作生成最优化.基于该理论设计和实现了一个在无人机避障场景下的仿真系统,并使用5种不同的强化学习算法进行效果验证.实验结果表明,基于本体指导的安全强化学习最优化策略能在屏蔽风险动作的基础上,实现智能体备用策略选取,比传统强化学习方法性能更优.

Abstract

Aiming at the problem that in the implementation process of safety reinforcement learning,the implementation approach based on shielding might be constrained by the lack of suitable alternative policies available,which resulted in the inability to prevent the system from leaving a safe state even if danger was detected.Although the implementation approach of knowledge integration could provide safety guidance for specific states by extracting conceptual features and applying structured knowledge,sometimes the guidance embedded in knowledge might not be the optimal strategy,and might even be inferior to the strategies learned by agent exploration.We proposed an optimization strategy for safety reinforcement learning guided by ontology to achieve risk identification avoidance and action generation optimization.Based on this theory,we designed and implemented a simulation system in the scenario of unmanned aerial vehicle obstacle avoidance,and verified the effectiveness by using five different reinforcement learning algorithms.The experimental results show that the optimization strategy for safety reinforcement learning based on ontology guidance can achieve alternative policy selection for intelligent agents on the basis of shielding risky actions,and has better performance than traditional reinforcement learning methods.

关键词

安全强化学习/屏蔽机制/本体/深度神经网络/联合查询

Key words

safety reinforcement learning/shielding mechanism/ontology/deep neural network/conjunctive query

引用本文复制引用

出版年

2025
吉林大学学报(理学版)
吉林大学

吉林大学学报(理学版)

北大核心
影响因子:0.46
ISSN:1671-5489
段落导航相关论文