首页|期权隐含信息提取及对股票市场的影响:基于机器学习的视角

期权隐含信息提取及对股票市场的影响:基于机器学习的视角

扫码查看
如何提取期权隐含信息并研究其对标的股票收益的影响一直是学界和业界关心的问题之一.现有研究主要依赖某个单一维度:在值程度(Moneyness)或者期限结构(Maturity),来提取期权隐含信息,如隐含波动率、隐含偏度或者隐含尾部风险等.如何在两个维度上同时提取隐含信息,并且如何从众多信息中提取共同信息因子是本文的研究重点.为解决上述问题,本文使用了主成分分析结合机器学习的方法,从期权波动率曲面中提取隐含信息,并检验其对标的股票收益率的可预测性.区别于传统方法,PCA-LASSO可以捕捉期权隐含信息的时变性,同时提炼出不同类型信息的共同驱动因子,因此对股票收益率具有更好的预测能力.
Extraction of Implied Information from Options and Its Impact on the Stock Market:A Machine Learning Perspective
How to extract implied information from options and study its impact on the returns of underlying stocks has always been a concern in both academia and industry.Existing research primarily relies on a single dimension:Either moneyness or maturity structure,to extract implied information,such as implied volatility,implied skewness,or implied tail risk,etc.How to extract implied information simultaneously from both dimensions,and how to extract common information factors from numerous pieces of information,are the focal points of this study.To address these issues,this paper utilizes a method combining principal component analysis with machine learning to extract implied information from the options volatility surface,and tests its predictability on the returns of the underlying stocks.Unlike traditional methods,PCA-LASSO can capture the time-varying nature of implied option information,while also refining common driving factors of different types of information,thus providing better predictive power for stock returns.

index optionoption implied informationprinciple component analysismachine learning

陈坚、唐国豪、姚加权

展开 >

厦门大学经济学院和邹至庄经济研究院,厦门 361005

湖南大学金融与统计学院,长沙 410006

暨南大学管理学院,广州 510632

股指期权 期权隐含信息 主成分分析 机器学习

教育部人文社会科学研究规划基金教育部人文社会科学研究规划基金国家自然科学基金

23YJA79000622YJA79007972003062

2024

计量经济学报

计量经济学报

CSTPCD
ISSN:
年,卷(期):2024.4(1)
  • 43