首页|Khmaladze变换及其在检验理论中的应用研究综述

Khmaladze变换及其在检验理论中的应用研究综述

扫码查看
在探讨复合假设检验问题时,基于经验过程的检验统计量往往缺乏分布无关性.Khmaladze变换,包括鞅变换和酉变换,为克服这一难题提供了有效的解决方案.首先,20世纪80年代初期,Khmaladze提出了鞅变换,专门用于处理连续分布函数的检验问题.随着时间的推移,鞅变换的理论基础得到了不断的深化和完善;其应用范围也日益扩大,涵盖了分布函数与回归模型等众多检验问题.进入21世纪,Khmaladze在2013年和2016年进一步提出了酉变换.其不仅适用于离散分布,也适用于连续分布,为统计学领域带来了新的视角和工具.然而,尽管Khmaladze变换在国际上已有一定的研究基础,但在中国,这两种变换方法的研究和应用尚未得到充分的认识.本文旨在对Khmaladze变换的起源、理论原理、发展过程以及当前的应用状况进行梳理,并对其进一步拓展和应用前景提出一些思考.
Review of Khmaladze Transformations with Their Applications on Testing Theorem
When addressing composite hypothesis testing,empirical process-based statistical tests often lack distribution-free.The Khmaladze transformation,includ-ing both the martingale and unitary transformations,provides an effective solution to this challenge.Initially,in the early 1980s,Khmaladze introduced the martin-gale transformation,specifically designed for testing problems involving continuous distribution functions.Over time,the theoretical foundation of the martingale trans-formation has been continuously deepened and refined;and its application scope has broadened,covering a wide range of testing problems,including distribution functions and regression models.Entering the 21st century,Khmaladze further proposed the unitary transformation in 2013 and 2016,which is applicable not only to discrete dis-tributions but also to continuous distributions,bringing new perspectives and tools to the field of statistics.However,despite a certain research foundation for the Khmal-adze transformation internationally,these two transformation methods have not yet been fully recognized in China.This article aims to sort out the origin,theoreti-cal principles,development process,and current application status of the Khmaladze transformation and to propose some thoughts on its further development and appli-cation prospects.

empirical processtestdistribution-freemartingale transformationunitary transformation

陈强

展开 >

上海财经大学经济学院,上海 200433

上海财经大学数理经济学教育部重点实验室,上海 200433

经验过程 检验 分布无关性 鞅变换 酉变换

2024

计量经济学报

计量经济学报

CSTPCD
ISSN:
年,卷(期):2024.4(4)