首页|基于改进LSTM模型的沪铜期货价格预测

基于改进LSTM模型的沪铜期货价格预测

扫码查看
相对于国内股票价格预测研究,国内大宗商品期货价格的预测研究相对较少.沪铜期货自上市以来其主力连续价格最高价为85500元/吨,最低价格为13670元/吨,对其投资风险可见一斑.本文选取沪铜期货1995年4月17日至2023年12月29日一共6992条的交易数据为测试样本,采用麻雀搜索算法(SSA)对长短期记忆模型(LSTM)进行超参数优化,并进行了优化前后的预测结果对比分析,结果显示:优化后的SSA-LSTM组合模型预测结果优于单独的LSTM模型,平均绝对误差MAE、均方根误差RMSE和平均绝对百分误差MAPE分别下降了16.46%、15.93%、16.98%.另外,从LSTM模型和SSA-LSTM组合模型的预测结果拟合图来看,两个模型的整体拟合效果较好,SSA-LSTM组合模型整体拟合效果优于LSTM模型;从拟合图局部可以清晰的看出,LSTM模型在价格峰值、峰谷的拟合效果要明显差于SSA-LSTM组合模型.无论是从拟合图的整体拟合效果还是局部的拟合效果分析,SSA-LSTM组合模型的拟合效果均优于LSTM模型,再次证明了麻雀搜索算法对LSTM模型的优化在沪铜期货这个标的有效性.
Prediction of Shanghai Copper Futures Prices Using an Improved LSTM Model
Compared to domestic stock price prediction research,there is relatively less research on predicting domestic commodity futures prices.Since its listing,the main continuous price of Shanghai copper futures has reached a high of 85500 yuan/ton and a low of 13670 yuan/ton,indicating its investment risk.This article selects a total of 6992 trading data of Shanghai copper futures from April 17,1995 to December 29,2023 as the test sample.The sparrow search algorithm(SSA)is used to optimize the long short-term memory model(LSTM)hyperparameters,and the prediction results before and after optimization are compared and analyzed.The results show that:the optimized SSA-LSTM combination model has better prediction results than the individual LSTM model,with a decrease in mean absolute error(MAE),root mean square error(RMSE),and mean absolute percentage error(MAPE)of 16.46%,15.93%,and 16.98%,respectively.In addition,from the fitting graphs of the prediction results of the LSTM model and the SSA-LSTM combination model,it can be seen that the overall fitting effect of the two models is good,and the SSA-LSTM combination model has a better overall fitting effect than the LSTM model;From the specific section of the fitted graph,it can be clearly seen that the LSTM model has a significantly worse fitting effect on price peaks and valleys than the SSA-LSTM combination model.Whether analyzing the overall fitting effect or local fitting effect of the fitting graph,the SSA-LSTM combination model has a better fitting effect than the LSTM model,once again proving the effectiveness of the sparrow search algorithm in optimizing the LSTM model for Shanghai copper futures.

LSTM modelsparrow search algorithm(SSA)price prediction

苏耀华

展开 >

青海民族大学,青海西宁 810007

LSTM模型 麻雀搜索算法(SSA) 价格预测

青海民族大学2024年研究生创新项目

65M2024083

2024

吉林金融研究
中国人民银行长春中心支行

吉林金融研究

CHSSCD
影响因子:0.418
ISSN:1009-3109
年,卷(期):2024.(7)
  • 10