首页|贝叶斯统计中共轭先验分布的教学研究

贝叶斯统计中共轭先验分布的教学研究

扫码查看
先验分布在贝叶斯统计中扮演着关键角色,而共轭先验则是其中最为重要的一种.学生对共轭先验分布的理解和掌握程度直接影响他们对贝叶斯统计方法的学习效果.目前的大多数教材通常是先介绍一些常见分布的共轭先验,然后再证明其共轭性质.然而,这种教学方法缺乏深度和灵活性.为了解决这个问题,本文提出在更广泛的指数族分布下,给出参数共轭先验的一般表达形式.接着,针对一些常见分布,通过从指数分布族结构推导出其待估参数的共轭先验,使得学生不仅能深刻理解共轭先验的本质,还能学到一种更为灵活的共轭先验选择策略.这种从一般到具体的教学方法有助于提高学生对贝叶斯统计的理解深度,并培养学生灵活运用共轭先验的能力.
Teaching Research on Conjugate Prior Distributions in Bayesian Statistics
The prior distribution plays a crucial role in Bayesian statistics,and conjugate priors are among the most important types.Students'understanding and mastery of conjugate prior distributions directly impact their learning outcomes in Bayesian statistical methods.Currently,most textbooks typically introduce some com-mon distributions with conjugate priors and then prove their conjugate properties.However,this teaching method lacks depth and flexibility.To address this issue,this article proposes a general expression for parameter conju-gate priors under a broader class of exponential family distributions.Subsequently,for some common distribu-tions,their conjugate priors for the parameters are derived from the structure of the exponential family,enabling students to not only gain a profound understanding of the essence of conjugate priors but also learn a more flexi-ble strategy for choosing conjugate priors.This teaching approach,transitioning from general to specific,helps enhance students'depth of understanding in Bayesian statistics and cultivates their ability to flexibly apply conju-gate priors.

Bayesian statisticsconjugate prior distributionexponential family distribution

孟祥斌、陈丽

展开 >

东北师范大学

长春大学

贝叶斯统计 共轭先验分布 指数分布族

国家社会科学基金项目

2301118

2024

吉林省教育学院学报

吉林省教育学院学报

ISSN:1671-1580
年,卷(期):2024.40(1)
  • 8