首页|大数据背景下"时间序列分析"课程教学改革研究

大数据背景下"时间序列分析"课程教学改革研究

扫码查看
"时间序列分析"是一门多领域交叉学科,人们可以通过研究时间序列数据的特征,模拟出合适的模型,并预测未来走势.以往,该课程一般以理论知识为主,对知识的实践与应用不够.针对大数据背景下的跨界复合型人才的培养目标,课程的教学方式需要紧跟时代潮流,进行多方面的改革.本文首先阐述了该课程教学改革的研究现状和存在的问题,进而提出三个改革方案,即建立"双师型"创新教学方式、根据专业实施灵活性分类教学以及"平时作业+项目实践+闭卷考试"多轨道并行式考核形式,最后阐述了结论与建议.希望通过完善教学方法,提高学生的理论和实践能力,培养出更多大数据时代所需要的统计人才.
Research on the Teaching Reform of"Time Series Analysis"under the Background of Big Data
"Time series analysis"is a multidisciplinary discipline,and people can study the characteristics of time series data,simulate a optimal model,and then predict the future trend.Traditional courses of time series analysis are based on theoretical knowledge,and often neglect the practice and application of knowledge.Howev-er,in view of the training goal of cross-border composite talents under the background of big data,the teaching pattern needs to follow the trend of the times and carry out various reforms.This paper first expounds the re-search status and existing problems of the teaching reform of this course,and then puts forward three reform plans,that is,the establishment of"double-qualified"innovative teaching methods,the implementation of flexible classification teaching according to the major and the multi-track parallel assessment form of"homework+proj-ect practice+closed book examination".Finally,the paper expounds conclusions and suggestions.It is hoped to improve students'theoretical and practical ability and train more statistical talents needed in the era of big data by improving teaching methods.

big data backgroundtime series analysisteaching reform

徐达

展开 >

东北师范大学数学与统计学院

大数据背景 时间序列分析 教学改革

2024

吉林省教育学院学报

吉林省教育学院学报

ISSN:1671-1580
年,卷(期):2024.40(4)
  • 13