首页|基于稠密卷积网络的拉刀磨损在线预测方法

基于稠密卷积网络的拉刀磨损在线预测方法

扫码查看
拉削是汽车制动钳支架槽的重要加工工艺.但加工过程中,若不能及时发现拉刀磨损异常,则会导致零件批量报废.本文提出一种拉刀磨损在线预测方法,采用拉刀信号振动特性,有效区分拉削过程与拉削间隙,并基于稠密卷积网络(DenseNet),构建拉刀磨损在线识别模型.结果表明:该方法自适应特征提取效果良好,泛化性和准确率均可实现实际加工过程拉刀磨损在线预测,对提高拉削生产效率和降低制造成本具有重要意义.
Online Prediction Method of Broach Wear Based on Dense Convolutional Network
Broaching is an important process of automobile brake caliper bracket groove.However,in the process of processing,if the broach wear anomaly can not be found in time,it will lead to batch scrap of parts.In this paper,an online prediction method for broach wear is proposed,which uses the vibration characteristics of broach signal to distinguish broach process and broach gap effectively,and constructs an online recognition model for broach wear based on DenseNet.The results show that the method has good adaptive feature extraction effect,and both generali-zation and accuracy can realize online prediction of broaching wear in actual machining process,which is of great significance for improving production efficiency and reducing manufacturing cost.

broach wear on-line monitoringadaptive feature extractiondense convolutional networkattention mechanism

张宇、田武郎、李宝明、郑华东、张顺琦

展开 >

上海大学机电工程与自动化学院

浙江畅尔智能装备股份有限公司

拉刀磨损在线监测 自适应特征提取 稠密卷积网络 注意力机制

企业委托项目

TC220H05J

2024

计量与测试技术
成都市计量监督检定测试所

计量与测试技术

影响因子:0.175
ISSN:1004-6941
年,卷(期):2024.51(1)
  • 9